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Visual interpretability of image-based
classification models by generative latent
space disentanglement applied to in vitro
fertilization

Oded Rotem 1, Tamar Schwartz2, Ron Maor2, Yishay Tauber2,
Maya Tsarfati Shapiro 2, Marcos Meseguer 3,4, Daniella Gilboa2,
Daniel S. Seidman2,5 & Assaf Zaritsky 1

The success of deep learning in identifying complex patterns exceeding
human intuition comes at the cost of interpretability. Non-linear entanglement
of image features makes deep learning a “black box” lacking human mean-
ingful explanations for the models’ decision. We present DISCOVER, a gen-
erative model designed to discover the underlying visual properties driving
image-based classification models. DISCOVER learns disentangled latent
representations, where each latent feature encodes a unique classification-
driving visual property. This design enables “human-in-the-loop” interpreta-
tion by generating disentangled exaggerated counterfactual explanations. We
apply DISCOVER to interpret classification of in vitro fertilization embryo
morphology quality. We quantitatively and systematically confirm the inter-
pretation of known embryo properties, discover properties without previous
explicit measurements, and quantitatively determine and empirically verify
the classification decision of specific embryo instances. We show that DIS-
COVER provides human-interpretable understanding of “black box” classifi-
cation models, proposes hypotheses to decipher underlying biomedical
mechanisms, and provides transparency for the classification of individual
predictions.

With the rapid growing volume and complexity of modern biomedical
visual data, we can no longer rely on human capacity to identify visual
patterns in biomedical images. Deep learning models, specifically
convolutional neural networks (CNNs), have shown great promise in
identifying complex patterns in biomedical images. CNNsmay achieve
performance comparable and even superior to that of domain experts,
as shown for example in diabetic retinopathy1–4 skin cancer5,6, cardio-
vascular risk factors7, chest radiograph interpretation8, breast cancer9,

mesothelioma10, genetic disorders11, and COVID12. The success of deep
learning stems from data-driven nonlinear optimization for feature
extraction toward a specific classification task without relying on prior
assumptions about the image data or specific measurables. However,
this success comes at the cost of poor interpretability. In classical
machine learning, hand-crafted features can be back-tracked to pro-
vide interpretable explanations of the model decisions13 (e.g., SHAP).
However, CNNs’ nonlinear entanglement of image features makes
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deep learning a “black box” that lacks straightforward explanations.
Understanding the image properties underlying the models’ predic-
tion is especially critical in biomedical domains because the clinician/
researcher must understand the clinical/phenotypic basis of the
machine’s prediction in order to trust it14–17. Moreover, understanding
the reason behind a machine’s prediction is key for deciphering the
underlying biologicalmechanisms,which in cases of disease detection,
is a critical step toward treatment18.

The most common visual interpretability methods for deep
learning image-based classification models are attribution-based
(also known as gradient-based) methods that generate heatmaps or
“attention maps” that highlight the image regions contributing most
to the models’ prediction19–21. Another, more recent approach for
visual interpretability, known as “counterfactual explanations”22, is
based on the use of generative models that alter the image to affect
the model’s prediction. This is done, for example, by generating
counterfactual images where the classification-driven image
properties are exaggerated to enable identification of subtle
phenotypes17,23. Alterations in image patterns that are associatedwith
changes in themodel’s prediction can then be interpreted by experts
to establish new mechanistic hypotheses and draw biological or
clinical conclusions23. Practically, however, current interpretability
methods suffer from limitations that make them not sufficiently
robust for systematic general-purpose visual interpretability of bio-
medical imaging based deep learning classification models24,25.A
major limitation toward systematic interpretability is the entangle-
ment of multiple classification-driving image properties producing
convoluted visual explanations of the object that is being inter-
preted. This hampers the expert’s ability to interpret which semantic
image properties contributed to the classifier’s decision. Here, we
present DISentangled COunterfactual Visual interpretER (DIS-
COVER), a generalized method toward systematic visual interpret-
ability of image-based classification models. The main innovation of
DISCOVER is a disentangling module that forces each latent feature
to encode exclusive image property that is distinct from the ones
encoded by other latent features, and thus, leads to disentanglement
of the latent representation in the context of the image space. This
disentanglement allows visually intuitive traversal of the latent space
one latent feature at a time under the assumption that each feature
will encode independent classification-driving semantic image
properties. We demonstrated that latent features can be visually
interpreted, by domain experts, to specific semantic image proper-
ties. These interpreted latent features can discover and quantify
classification-driving semantic properties that did not have explicit
measurements, and can be used to rank the importance of each
semantic property on instance-specific model’s predictions.

We applied our visual disentangled interpreter to the domain of
in vitro fertilization (IVF). In IVF, egg(s) are removed from the patient’s
ovaries, fertilized, and incubated in a laboratory. One or a few embryos
from the cohort are then transferred to the patient’s uterus. IVF is an
ideal example of a biomedical domain where visual assessment is the
key to its success. This is specifically relevant to the visual assessment
of embryo quality that occurs prior to embryo selection for transfer or
cryopreservation26,27. After approximately forty years of low-
throughput techniques, automated live embryo imaging technique
transformed IVF into a data-intensive field and led to the development
of unbiased and automatedmethods that rely onmachine learning for
visual assessment of embryo quality28–36. These advances are now
revolutionizing the field, with recent studies demonstrating that deep
learning models can exceed clinician performance in embryo
assessment30,37. The high volume of standardized image-based data
that are acquired in clinics around theglobe, alongwith the complexity
of the phenotypic information in embryo images, make IVF an attrac-
tive application to showcase visual interpretability. We demonstrate
the ability of DISCOVER to decipher manually annotated embryo

quality properties, to discover embryo quality properties thatwere not
explicitly annotated, and to determine which quality properties were
most dominant in the classification decision for specific embryos.

Results
Deep learning classification of blastocyst morphologic quality
The IVF process involves retrieving a cohort of oocytes, fertilizing
them with sperm, and incubating them for several days in vitro. The
fertilized eggs (embryos) are typically incubated until the blastulation
stage of embryonic development is reached after 5 or 6 days of
development (henceforth called a blastocyst). The highest quality
blastocyst(s) is then transferred into the uterus for implantation. We
trained a deep neural network to predict a blastocyst binary mor-
phologic quality (i.e., high versus lowquality) using a balanced training
dataset consisting of 2170 expert-annotated blastocysts images cap-
tured after 103 hours post insemination and obtained retrospectively
from three clinics (Methods). An expert embryologist annotated each
blastocyst image according to two of the Gardner and Schoolcraft
blastocyst quality grading criteria38 (herein calledGardner) (Fig. 1A): (1)
morphology of the inner cell mass (ICM), a compacted grouping of
cells within the blastocyst that eventually form the fetus; (2) mor-
phology of the trophectoderm (TE), a single cell layer surrounding the
blastocyst periphery that eventually forms the placenta. To define
binary labels, the blastocysts were defined as either ‘high’ (N = 1085) or
‘low’ (N = 1085) quality, based on their ICM and TE annotations,
according to the criteria defined in refs. 31,38 (Methods) (Fig. 1B). We
developed a preprocessing pipeline to localize blastocysts within the
image (Supplementary Fig. 1), followed by fine-tuning a pre-trained
VGG-1939 deep convolutional neural networkmodel by re-training it to
discriminate between high- versus low-quality blastocysts (Methods)
(Fig. 1C). This IVF-CLF model performed well with an area under the
receiver operating characteristic (ROC) curve (AUC) of 0.93 (Fig. 1D),
which is comparable to the classification performance reported in
other recent studies19,31,40. The reason for working with a high-
performing model that is based on known morphologic properties is
that it allows for a controlled test-bed for assessing our interpretability
method. We attempted to interpret our IVF-CLF model by applying
GradCAM, a classic “explainable AI” method that generates heatmaps
highlighting the image regions contributingmost to a given prediction
of deep neural network classifiers20. But GradCAM provided con-
voluted visual explanations that were unintuitive to embryolo-
gists (Fig. 1E).

DISCOVER, the visual disentangled interpreter—a generative
network architecture for visual interpretability of image-based
deep learning classification models
We developed DISCOVER, a general-purpose interpretability method
designed to discover the underlying visual properties driving a clas-
sification task, and applied it to identify the visual cues driving the IVF-
CLF trained to discriminate between high- and low-quality blastocyst
images. DISCOVER is based on a deep learning generative framework
that encodes the image data to a disentangled latent representation.
This allowed for traversing over the latent space, one latent feature at a
time, by forcing each latent feature to encode independent
classification-driving image properties. This amplification of a specific
discriminative latent feature enabled interpreting images with visual
counterfactual explanations along a specific phenotypic axis in the
image space. Enhanced interpretability was enabled by exaggerating
classification-driving latent features (and their corresponding image
properties), while maintaining the rest of the features (and their cor-
responding image properties) fixed. Training simultaneously opti-
mizes six loss terms described below (Fig. 2A, B, full details in
Methods). The weights for each loss term were optimized during
training by assigning higher weights to loss terms that did not
converge.
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To enable effective visual interpretability with counterfactual
examples, the generative model must support reconstruction of high
quality, realistic images from the latent representation space. We
trained an adversarial perceptual autoencoder comprising two loss
terms. The first loss term was a perceptual loss that enforced high
quality image reconstruction. It was implemented by an autoencoder
with a latent representation of 350-dimensions, where the recon-
struction minimized the Euclidean distance between feature
maps extracted from an ImageNet-based pre-trained VGG-19 network
(ImageNet-CLF). This perceptual losswaspreviously shown to improve
image embeddings41. The second loss termwas an adversarial loss that
enforced a continuous and probabilistic latent space. The adversarial
loss optimized the latent representations such that a discriminator
network fails to distinguish the latent representations derived from
blastocysts images from vectors drawn from a standard normal dis-
tribution. Together, the perceptual adversarial autoencoder enabled

reconstruction of realistic blastocyst images from traversals over the
latent space, as validated by a trained embryologist (Fig. 2C).

The third loss enforced domain-specific classification-oriented
encoding. Subtle differences in visual features important for the
supervised model’s decisionmay be lost during image reconstruction.
Thus, we minimized the discrepancy of the supervised model’s inter-
mediate layers (i.e., perceptual loss) and the IVF-CLF prediction score
between the input images and their corresponding reconstructed
images. This second perceptual loss constrains the generative model
to maintain image features that are important for the supervised
model’s decision. Accordingly, the blastocysts images and their cor-
responding reconstructions exhibited similar IVF-CLF classification
scores (Fig. 2C, D).

The fourth and fifth loss terms enforced disentanglement of the
latent representation (Fig. 2A, yellow and Fig. 2B). The goal of these
loss terms was to constrain a latent representation such that each
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Fig. 1 | Supervised machine learning model accurately classifies blastocysts
according to their high versus low morphologic quality. A Blastocyst quality is
determined according to two manually annotated quality criteria, the Inner Cell
Mass (ICM) and the Trophectoderm (TE). The morphologic quality of the ICM is
graded A–C and determined according to the size and compaction of the mass of
cells that eventually form the fetus. The morphologic quality of the TE is graded
A–C and determined according to the number of cells and cohesiveness of the
single layer of cells at the outer edge of the blastocyst that eventually forms the
placenta. B Left: representative blastocysts labeled as high quality according to
manual embryologists’ (ICM, TE) annotations of (A, A), (A, B), or (B, A) (top row).

Right: Representative blastocysts labeled as low quality according to manual
embryologists’ (ICM, TE) annotations of (B, B), (C, B), or (B, C). C Schematic sketch
of the IVF-CLF binary classifier. The IVF-CLF backbone is a VGG-19 architecture and
training was initialized from the ImageNet pretrained weights. 977 high-quality and
977 low quality blastocysts were used for training. D ROC curve of the blastocysts
quality IVF-CLF with a test set of 108 high-quality and 108 low quality blastocysts.
E GradCAM heatmaps obtained by aggregation of the last convolutional layer of
IVF-CLF for all blastocysts examples in B. Warmer colors correspond to more
relevant regions for the classification outcome. For all panels scale bar = 12.5 μm.
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Fig. 2 | DISCOVER—a generative model designed toward visual interpretability
of image-based binary classification models. A DISCOVER’s high-level archi-
tecture. Input: pre-processed blastocyst images, IVF-CLF—a binary classifier trained
to predict blastocyst quality. The DISCOVER architecture is composed of 3 mod-
ules: (1) an adversarial autoencoder for high quality reconstruction and generation
of realistic images from the latent representation space (dashed blue). The pre-
trained ImageNet-CLF is used for perceptual loss minimization between real and
reconstructed images; (2) minimization of the deviation between the IVF-CLF
scores of the input image and its corresponding reconstructed image toward
classification-oriented encoding (dashed green); (3) a disentanglement module
(yellow, detailed inB) which decorrelates the latent features and associates a small
subset of the latent features to unique image properties correlated with the IVF-
CLF. Scale bar = 12.5 μm. B Architecture of the disentanglement module that
include two loss terms toward a classification-driving subset of latent features: (1)
The disentanglement loss term minimizes the error of an additional network
trained to identifywhich latent featurewas altered. Thismodel receives as input the
difference image between the unaltered reconstructed image (from Z) and the
reconstructed image after altering a random latent feature (green in Zp), and is
optimized to predict the index of the altered latent feature (green “predicted latent
feature”); (2) Constraining the generative model to maintain a specific subset of
latent features that are correlated to the frozen model’s classification score. The
first 14 features in the latent representation (cyan in Z) are used as input for a

supervised model that is optimized to predict the IVF-CLF score (“predict score”
below Z). Specifically, this subset of latent features is fully connected to a single
neuron which is passed through a sigmoid activation, and is minimized by ‘binary
cross entropy’ loss. An additional regularizer on the latent vector Z further forces
decorrelation by whitening the covariance matrix. C Representative blastocysts
images (‘Real’, top) and their corresponding reconstructions (‘Recon’ bottom)
alongwith the corresponding IVF-CLF classification scores above each image. Scale
bar = 12.5 μm. Scatter plot of the IVF-CLF classification scores of the blastocysts’
images (x-axis) and their matched reconstructed images (D) or matched scores
derived from the classification-driving subset of latent features (E) (y-axis).N = 1085
high quality blastocysts (blue), N = 1084 low quality blastocysts (blue). Mean
absolute error between real images scores and reconstructed images scores (D) or
subset of latent features scores (E) is 0.04 and 0.06, respectively. Classification
performance of IVF-CLF applied to the reconstructed images (D, AUC=0.93), and
of the single neuron applied to the classification-driving subset of latent features
(E, AUC =0.92), was almost identical to the classification performance of IVF-CLF
applied to the real images (AUC =0.93, Fig. 1D).F Pearsoncorrelation coefficient (y-
axis) between each latent feature (x-axis) and the IVF-CLF’s classification score.
Panels D–F use N = 2169 blastocysts that were not used to train the model. Mean
(std) of the absolute correlation of the 14 classification-driving subset of latent
features were 0.257 (0.111) and 0.049 (0.0038) for the rest of the latent features.
Two sided Mann–Whitney-U test p-value < 0.003.
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latent feature encodes a distinct visual property in the image. This
disentanglement was achieved by (1) whitening (forth loss) by dec-
orrelating the latent space, and forcing its covariance toward a unit
matrix42 (Fig. 2B, ‘COV’ matrix, Supplementary Fig. 2), and (2) coun-
terfactual disentanglement (fifth loss) by optimizing an additional
network (Fig. 2B, green ‘Dsnt’ trapeze) to identify which latent feature
was altered in a perturbed image. The input of the counterfactual
disentanglement model consisted of two images: the unaltered
reconstructed image and the reconstructed image after altering the
latent feature (Fig. 2B). These two loss terms constrain each latent
feature to encode image features that are distinct from other latent
features and, thus, leads to disentanglement of the latent representa-
tion. This allows for simpler traversal of the latent space one feature at
a time under the assumption that each feature will encode indepen-
dent classification-driving image features. We also hypothesize that
such feature disentanglement will push the latent representation, such
that each latent feature will tend to encode a single image feature. In
summary, the disentangled latent representation enables more intui-
tive visual interpretability where alteration of each latent feature
would amplify image properties specifically assigned to that feature.
This is in contrast to entangled latent representations, where each
latent feature is more prone to encode uninterpretable visual image
properties.

The sixth, and final, loss term, enforced a classification-driving
subset of latent features (Fig. 2B, cyan feature subsetmarked in Z). The
goal of this loss term was to attain a sub-group of latent features that
are highly correlated to the classificationmodel’s prediction, while the
rest of the latent features maintain high quality reconstruction. We
forced 14, out of the 350 latent features, to correlate more strongly
with the classification output of the input image. This was achieved by
(simultaneously) training another layer (of a single neuron) to predict
the IVF-CLF’s classification score from the first 14 features in the latent
representation. Accordingly, the IVF-CLF’s classification scores were
highly associated with the corresponding classification derived from
the 14-dimensional subset (Fig. 2E). These first 14 latent features were
more correlated to the IVF-CLF classification score when compared to
the other features in the latent representation (Fig. 2F).

All six loss terms wereminimized simultaneously (Supplementary
Fig. 3), ultimately providing us with a generative model designed for
interpretation anddiscoveryof blastocyst quality classification-driving
clinically meaningful image properties. Specifically, a generative
model enabling high-quality and realistic reconstruction (loss #1) and
traversal (loss #2) of the latent space, with a domain-specific classifi-
cation-oriented encoding (loss #3). The latent representation included
a subset of 14 latent features optimized toward explainability by visual
disentanglement (loss #4-5) and correlation with the classifier that is
being interpreted (loss #6).

Ablation experiments verified that all loss terms were necessary
toward high quality reconstruction (Supplementary Fig. 4A), classifi-
cation oriented encoding (Supplementary Fig. 4B), classification-
driving subset of latent features (Supplementary Fig. 4C, D), and dis-
entanglement of the latent representation (Supplementary Fig. 4E).

Visual interpretation of classification-driving latent features:
blastocyst size and trophectoderm
To visually interpret which blastocyst morphologic quality properties
had the greatest impact on the classification, we ranked the subset of
classification-driving latent features according to their correlations
with the IVF-CLF’s classification score. For eachof the top ranked latent
features and for each given blastocyst, we generated a series of
counterfactual explanations. By decreasing and increasing each cur-
rent latent feature by 3 standard deviations, while fixing all other fea-
tures, the decoder could generate a series of “in silico” blastocysts
images gradually morphing toward exaggerated better or worse
quality along the visual phenotypic axis defined by that feature, in

accordance with the IVF-CLF’s classification score (Fig. 3A, Supple-
mentary Fig. 5A, B). We visualized the counterfactual visual alteration
for each of the top five ranked features of the same reconstructed
blastocyst image. The visualizationof the counterfactual alterationwas
computed using the Structural Similarity index43 (SSIM), where each
pixel was assigned with the SSIM dissimilarity of its corresponding
patch between two reconstructed images (Methods). Visualizing each
feature with respect to reconstructed images after major alterations
(±3 standard deviations), for the same blastocyst, revealed that each
feature showed a distinct visual counterfactual alteration pattern
(Fig. 3B, Supplementary Fig. 6). These results suggested that the
classification-driving latent features were visually disentangled by the
morphologic properties that they encode in the reconstructed blas-
tocyst images.

We next used these visual counterfactual alterations to interpret
the two top classification features. These were features #0 and #10
with a Pearson correlation coefficient of 0.69 and −0.65 to the IVF-CLF,
respectively. Since the variance of all latent features equals one due to
the latent generative-adversarial loss (Methods), we morphed the
latent features within the range [−3, +3], and visualized the counter-
factual alterations between the twoextreme reconstructed images.We
observed that the counterfactual visual alterations of feature #0 were
concentrated around the blastocyst bulk, indicating a monotonically
altered blastocyst size, leading to a corresponding change in the
classification score (Fig. 3C—top, Supplementary Fig. 5B, C). While the
blastocyst size was not explicitly annotated in our data, it was pre-
viously linked to clinical pregnancy44. The blastocyst size is also a
property highly associated with the blastocyst expansion status45, i.e.,
the volume and degree of expansion of the blastocyst cavity, which is
the third quality grading criteria in the Gardner assessment26. For
feature #10 we observed visual counterfactual alterations con-
centrating in the blastocyst periphery, which corresponds to the tro-
phectoderm. The counterfactual trophectoderm visual quality was
monotonically altered in concurrence with the latent feature value,
leading to a corresponding change in the classification score (Fig. 3C—
bottom,Supplementary Fig. 5B,C). These visual explanations for latent
features #0 and #10 were robust to image flipping and brightness
changes (Supplementary Fig. 5D). To further corroborate the encoding
to blastocyst size and TE quality, we randomly selected a sequence of
nine blastocysts in predefined monotonically increasing intervals of
latent features #0 and #10. Visual observation by embryologists sug-
gested that the changes were mostly attributed to blastocyst size and
TE quality, and respectively, the IVF-CLF scores gradually increased in
relation to the change in the corresponding latent features (Fig. 3D,
Methods). Finally, to testwhether the interpretability of the size andTE
was only possible for the high-performing IVF-CLF model, we trained
DISCOVER to interpret a moderately-performing VGG-19 model that
was trained until reaching an AUC of 0.85 and confirmed that the top
two classification-driving latent features encoded the blastocyst size
and the TE (Supplementary Fig. 7). These disentangled visual expla-
nations of size and TE could not be attained with other widely used
visual explanation techniques such as GradCAM, SHAP and LIME13,20,46

(Fig. 3E, Methods). These results established the potential for DIS-
COVER to generate representations in which each latent feature
encodes a visually interpretable classification-driving image property.

Quantitative and empirical expert validation of interpreted
classification-driving latent features encoding the blastocyst
size and the trophectoderm
After visually interpreting the classification-driving latent features #0
and #10 as blastocyst size and trophectoderm, correspondingly, we
aimed at quantitatively and systematically validating these inter-
pretations. Correlation between the latent features showed that fea-
tures #0 and #10 were weakly correlated (Pearson correlation
coefficient = −0.35, ranked 1 out of 91 pairwise feature correlation, see
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values, blue—classification scores. Yellow bounding box—reconstruction of the
unaltered image. D Panel of nine randomly selected sequences of blastocysts in
predefined monotonically increasing intervals of latent feature #0 (top) and #10
(bottom) Red—latent feature value, blue—classification score. E Comparison of
DISCOVER interpretability to GRADCAM, SHAP and LIME. Five examples showing
(from left to right): the original blastocyst, visual counterfactual alteration of latent
feature #0 and #10, GradCAM heatmap (red/blue—high/low importance corre-
spondingly), SHAP (red/blue—high/low importance correspondingly) and LIME
(green—associated with the label, red—associated with the opposite label). For all
panels scale bar = 12.5 μm.
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red dashed square in Supplementary Fig. 2).Moreover, it is known that
the blastocyst size and TE quality are associated with one another and
with the overall blastocyst quality45. To overcome the challenge of
quantitatively decoupling the interpretation of these associated latent
features to their corresponding associated morphologic properties,
wematched pairs of blastocysts such that onemorphological property
(size/TE)was similar among theblastocysts and the other propertywas
different. Specifically, to quantify the association between latent fea-
ture #0 and blastocyst size, we matched pairs of blastocysts with the
same expert embryologist-annotated TEgrades (both grade ‘A’ or both
‘B’), and with large differences in their sizes, as calculated from the
segmentation masks. Such matching enabled direct comparison of
size by reducing the confounding effect introduced by the correlated
TE. To assess the association between latent feature #0 and blastocyst
size, we calculated the distribution of signed differences in feature #0
between the larger and the smaller blastocysts in the matched pairs.
Most of the larger blastocysts in thematchedpairs hadhigher values in
feature #0 as observed by a distribution shifted toward higher positive
values (Fig. 4B, blue distribution), indicating that larger blastocysts
(with the same TE annotations) were associated with higher values in
latent feature #0. As a control, we calculated the distribution of signed
differences of latent feature #10 in thematched pairs. Here, we flipped
the order of subtractionbecause feature#10was negatively correlated
with the IVF-CLF scores. This distribution was mostly centered around
0 indicating that latent feature #10 was only marginally altered for

larger blastocysts with matched TE annotations (Fig. 4B, red distribu-
tion). This direct comparison between distributions was legitimate
because the latent features were normalized and indicated that latent
feature #0 was more associated with the blastocyst size. To further
validate that blastocyst size was specifically controlled by feature #0,
we repeated the process of calculating the distributions of the mat-
ched blastocysts pairs’ signed differences for each of the 14
classification-driving subsets of latent features (Methods). The sub-
traction order was according to the correlation sign of each latent
feature with the IVF-CLF scores (Fig. 2F). Themedian of the differences
between larger versus smaller blastocysts pairs with matched TE
annotations was highest for feature #0, thereby providing more evi-
dence that this feature specifically encodes the blastocyst
size (Fig. 4C).

We repeated the same analysis to quantitatively link latent feature
#10 to the TE quality. We matched pairs of blastocysts with similarly
computed sizes and differently annotated TE grades (‘A’with ‘B’or vice
versa) and calculated the distribution of signed differences in feature
#10 between the blastocysts with lower and higher TE grades (Fig. 4E).
Blastocysts with higher TE qualities (and similar sizes) were associated
with positive difference values in latent feature#10 (Fig. 4E, red). Using
latent feature #0 as a control, showed positive difference values to a
lesser extent (Fig. 4E, red versus blue). Themilder effect in feature #10
with respect to#0 couldbecausedbecauseof imperfect segmentation
of the blastocyst and/or because the imperfect disentanglement of

Fig. 4 | Statistical validation that the blastocysts’ size and TE quality are
encoded by the top two features in the latent representation. A 2134 matched
pairs of blastocysts with similar TE annotations and different sizes. The subtrac-
tions of each latent feature value for each blastocyst and its corresponding paired
blastocyst were pooled for each latent feature. The order of subtraction is deter-
mined according to the blastocysts’ size and sign of the correlation between the
latent feature and the IVF-CLF scores (Fig. 2F).BDistributions of signed differences
in latent features #0 (blue) and#10 (red)betweenmatchedpairs of blastocystswith

similar TE and different size. Median values = 1.64 and 0.23 respectively (vertical
lines). C Median values of the distributions of signed differences for the 14
classification-driving subsets of latent features. The blue and red vertical line
represent the median of latent features #0 and #10 respectively. D–F Analysis of
808,326 matched pairs of blastocysts with similar size and different TE, corre-
sponding to A–C. (E) Median values = 0.8 (latent feature #0) and 0.96 (latent fea-
ture #10). F Note smaller dynamic range with respect to C.
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feature #0, in terms of its phenotypic un–coupling—i.e., latent feature
#0 may contain some information specifically attributed to the TE in
addition to size (see Discussion). Still, latent feature #10 encoded the
TE quality better than any other of the classification-driving subset of
latent features (Fig. 4F).

As a final validation, we decided to empirically assess whether a
trained embryologist can specifically associate the deviation in a latent
feature with its corresponding interpreted morphologic property. We
matched pairs of blastocysts according to latent features #0 and #10.
This time, we did not use the annotated TE and computed size; rather,
we aimed for expert inference of these morphologic properties from
the latent features’ values. Matched blastocyst pairs had either similar
values for latent feature #0 and dissimilar values for latent feature #10
or vice versa. A trained embryologistwas providedwith images of each
matched pair and asked to determine whether blastocysts were dif-
ferent in size or in TE quality, while knowing that one of these para-
meters was fixed (i.e., highly similar). The embryologist was able to
identify the different latent features according to the corresponding
interpreted morphological property in 65/75 (86%) of pairs (Supple-
mentary Fig. 8). When asked to determine for which blastocyst the TE
was better in pairs that had similar values of feature #0 and dissimilar
values of feature #10, the embryologist successfully identified 33/39
(85%) of blastocysts with “better” feature #10. When asked to deter-
mine for which blastocyst the size was larger in pairs that had similar
values of feature #10 and dissimilar values of feature #0, the embry-
ologist successfully identified 31/36 (86%) of blastocysts with “better”
feature #0. Altogether, our results established that DISCOVER visually

disentangled the latent representation, such that latent feature #0
specifically visually encodes the blastocyst’s size and latent feature
#10 specifically visually encodes the trophectoderm’s quality.

Discovery and interpretation of the blastocoel density as a
classification-driving property
Our previous results established that DISCOVER can identify latent
features that encode two hallmark embryo morphologic properties,
according to the Gardner blastocyst assessment system: blastocyst
size and TE quality. Both of these properties are routinely assessed by
embryologists to determine blastocyst quality prior to implantation.
Next, we asked whether we could use DISCOVER to identify latent
features that encode non-obvious morphologic properties in the
blastocyst, i.e., ones that were not used during manual blastocyst
quality annotation? To answer this question, we turned our attention
to latent feature #11, the third top classification feature (Fig. 3B) with a
Pearson correlation coefficient of 0.44 in relation to the IVF-CLF score
(Fig. 2F). Latent feature #11 also appeared in Fig. 4C and Fig. 4F as one
of the top 3 features most correlated with blastocyst size and TE
quality, which further indicates that it encodes discriminative infor-
mation about the blastocyst’s quality. The visual counterfactual
alteration of latent feature #11 in Fig. 3B was identified by three
embryologists / IVF experts as a potentially known morphologic fea-
ture of the embryo termed the blastocoel, a fluid-filled cavity inside the
blastocyst47 (Fig. 5A). The presence and degree of blastocoel expan-
sion, i.e., the increase in blastocoel volume is associated with implan-
tation success and live birth48. Visual counterfactual alterations were
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Fig. 5 | Blastocoel discovered as a classification-driving semantic image prop-
erty. A The blastocoel is a fluid-filled cavity forming the blastula marked in gray
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alteration of five blastocysts obtained by altering latent feature #11 by ± 3 standard
deviations. Top row: reconstructed altered images with increased classification
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scores. Bottom row: counterfactual visual alteration between the corresponding
top and middle rows. Color map indicates the local change measured as 1-SSIM.
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tonically increasing intervals of latent feature #11. Red—latent feature value, blue—
classification score. For all panels scale bar = 12.5 μm.
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interpreted by expert embryologists as having denser and more
granular blastocoelic regions, suggesting that this change in the blas-
tocoel appearance is the classification-driving morphologic property
encoded by latent feature #11 (Fig. 5B). This visualization suggests that
there are additionalmorphologic parameters of the blastocoel beyond
its volume expansion that may be associated with overall embryo
quality. A sequence of nine blastocysts that were randomly selected in
predefined monotonically increasing intervals of latent features #11
further verified the encoding to the blastocoel (Fig. 5C). This inter-
pretation of a blastocyst morphologic property that was not explicitly
used to annotate blastocyst quality highlights the potential for DIS-
COVER to define a quantitative measure for morphologic properties
that do not have explicit measurements and even identify visual
classification-driving properties that were not known a priori.

Determining the cause of classification of a specific blastocyst
Our results indicate that DISCOVER can reverse engineer the inner
working of binary classification models by identifying classification-
driving morphological properties. However, these results do not
answer the question: what morphological properties drove the classi-
fication of a specific blastocyst? To answer this question, we took
advantage of DISCOVER’s disentangled latent representation, i.e.,
learning representations where each latent feature is mapped to a
distinct visual property in the image. This enabled us to refer to the
latent representation as an (interpreted) tabular feature vector, on
whichwecould apply SHapley Additive exPlanations (SHAP), amethod
for interpreting tabular-based models’ predictions13. For a given pre-
diction, SHAP calculates the contribution of each feature toward the
prediction. We applied SHAP to the classification-driving subset of
latent features, in the context of the prediction by the single layer
perceptronmodel (see “predict score” in Fig. 2B) thatwas optimized to
predict the IVF-CLF score in loss #6. The weight (“Shapely value”)
attributed to each latent feature, along with the mapping from indi-
vidual latent features to interpreted semantic properties, enables to
identify and rank the semantic properties most influencing the classi-
fication of a specific instance (Fig. 6A). Calculating the mean SHAP
values for all features across the entire dataset showed similar ranking
to the correlation-based analysis with latent features #0, #10 being the
two highest ranked features, and agreement in 4 of the top 5 latent
features (Supplementary Fig. 9). To evaluate why a specific blastocyst
was predicted as high/low quality by the IVF-CLF, we visualized blas-
tocysts according to their IVF-CLF predictions and their SHAP expla-
nations. These visualizations were observed and described by an
expert embryologist. Blastocysts with strong positive/strong negative
SHAP values for feature #0 exhibited corresponding large/small sizes
(Fig. 6B left), while blastocysts with strong positive/strong negative
SHAP values for feature #10 exhibited corresponding high/low TE
grades (Fig. 6B middle). Blastocysts with dominant positive/negative
SHAP values for features #0 and #10 exhibited appropriately corre-
sponding size and TE morphologies (Fig. 6B right). Blastocysts with
strong positive SHAP values for feature #11 were confirmed to have
high quality blastocoels, and were described by an expert embryolo-
gist as having high density cell regions and associated stretched zona-
pellucidamembranes (Fig. 6C left andmiddle). Blastocysts with strong
negative SHAP values for feature #11 were confirmed to have low
quality blastocoels (Fig. 6C right). These results indicated that SHAP
can be used to weigh and rank the latent features of a specific blas-
tocyst according to their predictive contribution, and that this ranking
can be translated to the specific disentangled and interpreted mor-
phological properties that drive the prediction of a specific blastocyst.

Instance-interpretability determining causes for misclassified
blastocysts
We used DISCOVER’s instance-interpretation to analyze causes for
misclassification of blastocysts by the IVF-CLF (Supplementary Fig. 10).

We focused on the sub-group of blastocysts for which the IVF-CLF
predictions were off with respect to the embryologist annotation:
high-quality annotated blastocysts with IVF-CLF score <0.4, and low-
quality annotated blastocysts with IVF-CLF score > 0.6. Using DIS-
COVER’s instance interpretation we identified two reasons for mis-
classification. The first reason was annotation errors. We presented to
an embryologist an image of a misclassified blastocyst along with its
corresponding SHAP explanation. The embryologist was able to
interpret the decision of our IVF-CLF model, and to use it to con-
clusively conclude that the blastocyst morphological annotation was
erroneous. The second reason for misclassification was that the IVF-
CLF was biased to over-emphasize the importance of large blastocysts
over othermorphological properties for determination of high-quality
blastocysts. We reached this conclusion by identifying a sub-group of
large, but low-quality annotated, blastocysts, that were erroneously
predicted as high-quality. DISCOVER instance interpretation empha-
sized the role of the blastocysts’ size, reflected in high SHAP-values for
latent feature #0, in the IVF-CLF decision. These results suggest that
DISCOVER instance interpretation can be applied to identify errors in
label-annotations and errors in classification.

Generalizing DISCOVER to interpretation of classification-
driving features distinguishing between healthy and Alzhei-
mer’s-diseased brains in MRI images
We designed DISCOVER as a generalized method for visual interpret-
ability of image-based classification models. To showcase this gen-
eralization we used DISCOVER to interpret the visual traits
semantically distinguishing between healthy and Alzheimer’s disease49

brain Magnetic Resonance Imaging (MRI) images. We used the Alz-
heimer’s 4-class Kaggle dataset50, trained DISCOVER to interpret a
trained Alzheimer’s disease state classifier that we called AD-CLF
(identical to IVF-CLF) (Supplementary Fig. 12A, B) and visualized the
counterfactual alteration interpretations (Supplementary Fig. 12C).We
interpreted the top three ranked latent features, namely#2, #5, and#6,
with Pearson correlation coefficient of 0.66, 0.56, and 0.54, respec-
tively (Supplementary Fig. 12B). Visualization of the counterfactual
alteration revealed that all three latent features were localized at the
center area in the axial 2D brain image, known as the “lateral ventricle”
which in the hippocampus, a brain region shown to suffer from atro-
phy leading to increased volume upon Alzheimer’s progression51.
Moreover, each of the three latent features was distinctly localized
within sub-regions names the lateral ventricle termed occipital horn,
the frontal horn and the surrounding area which can be interpreted as
the integration of both the occipital and the frontal horn (Supple-
mentary Fig. 12C).

Discussion
DISCOVER is a generic framework designed toward visual
interpretability of image-based classification models
Convolutional deep neural networks success at complex pattern
recognition in images is attributed to non-linear simultaneous opti-
mization of feature extraction and model training. However, this suc-
cess comes at a cost. The non-linear entanglement of image features
makes it difficult to interpret which semantic image properties were
most important for the models’ decision. DISCOVER is a generative
model that optimizes latent representations geared toward interpret-
ability of the inner decision making of a given classification model.
DISCOVER representations are optimized toward classification-driven
disentanglement of the latent representation, where a subset of latent
features encapsulates the discriminative information of the classifica-
tion model, and where each of these latent features encodes a distinct
visual property in the image. Moreover, DISCOVER enables realistic
reconstruction and traversal of the latent space, without losing visual
information important to the classification model. Together, these
design choices of DISCOVER enable expert-in-the-loop interpretation
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Fig. 6 | Explaining the IVF-CLF decision for a specific blastocyst by applying
SHAP to the classification-driving subset of latent features. A DISCOVER’s
classification-driving subset of latent features (loss #6) uses the latent repre-
sentations (‘Z’) as an input to a single neuron which was trained to predict the IVF-
CLF classification score. SHapley Additive exPlanations (SHAP) were applied to
interpret which were the most important latent features (according to their
“Shapley values”) for the prediction of this single layer perceptron given a specific
instance. The interpretation of latent features to semantic properties enables
instance interpretability. B, C SHAP values for specific blastocysts. B Blastocysts
with dominant SHAP values for latent feature #0 (encoding size), and/or #10

(encoding TE). Top/bottom rows present IVF-CLF predicted high/low quality
blastocysts correspondingly, exhibiting different explanations according to their
SHAP values. Blastocysts with high SHAP values for latent feature #0 (left), high
SHAP values for latent feature #10 (middle), and high SHAP values for both latent
features #0 and #10 (right). C Blastocysts with dominant SHAP values for latent
feature #11 (encoding the blastocoel). Shown are three blastocysts, two with high
(left, middle) and one with low (right) SHAP values for latent feature #11 (our
dataset had six blastocysts with the most dominant SHAP values in latent feature
#11). Scale bar = 12.5 μm for all panels.
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of the classificationmodel by generating counterfactual images where
each disentangled classification-driving image property is specifically
exaggerated. This is achieved by shifting the latent representations
and their corresponding image reconstructions, one latent feature at a
time, while leaving the rest of the latent representation fixed. This
counterfactual traversal along the latent space provides critical insight
regardingwhich semantic image properties aremost important for the
classification model’s decision process, including discovery of new
potential classification-driving semantic properties that were not
known a priori. Once latent features are visually interpreted to specific
semantic image properties, standard tabular-based explainable AI
methods (e.g., SHAP), can be applied to weight and rank the semantic
properties most influencing the classification of a specific instance.
Altogether, our general framework proposes a two-step interpret-
ability approach. First, domain experts interpret the specific
classification-driving semantic image properties encapsulated in DIS-
COVER’s latent representation, revealing the inner workings of a clas-
sification model. Second, using the interpretation of the latent
representation to explain the classification decision of specific
instances. BeyonddemonstratingDISCOVER interpretability capability
on two biomedical (IVF, Alzheimer’s) applications, in a separate study
we applied DISCOVER to interpret two general computer vision data-
sets of human male-versus-female facial classification and cat-versus-
dog facial classification52. These successful visual interpretations
across four distinct domains strongly indicate that DISCOVER is a
generalized interpretability method.

DISCOVER interpretation of in vitro fertilization blastocysts
quality classification
Our main demonstration of the applicability of DISCOVER was in the
challenging domain of biomedical imaging, where providing insight
explaining the “black box” prediction can propose new hypotheses to
decipher the underlying biomedical mechanisms and/or assist in
clinical decisions. Specifically, we interpreted a classification model
optimized to predict human blastocysts morphologic quality in the
context of IVF. First, we visually interpreted the top two classification-
driving latent features that encode two well established blastocyst
quality grading parameters: blastocyst size, as a proxy of development
stage and degree of expansion, and trophectoderm quality. Second,
we quantitatively and systematically validated the specific interpreta-
tion of these latent features as encoding the size and the trophecto-
derm, overcoming the inherent association between these two
morphological properties. Third, we discovered a latent feature
encoding the blastocoel density, which was a classification-driving
morphological property that was not explicitly annotated. Impor-
tantly, there were no previous measurements to quantify blastocoel
density, highlighting the potential of DISCOVER to discover new
classification-driving semantic image properties and quantify these
properties even without previous explicit measurements, through the
corresponding latent feature values. Finally, we computationally
determined and empirically verified which interpreted morphological
properties were most important toward a classification decision of
specific blastocyst instances. This instance-interpretability was also
used to determine causes for misclassified blastocysts, which suggest
potential applications to detecting errors in label annotations and in
the classification decision process. Our analyses demonstrate that
DISCOVER can provide human-interpretable understanding of a “black
box” classification model and for the classification of individual
predictions.

DISCOVER can have direct clinical relevance in the domain of IVF
byproviding transparencyand trust in theupcoming eraof “black box”
AI-based blastocyst selection53–56. Moreover, in situations where more
than a single blastocyst is selected for transfer, the embryologistmight
prefer to select blastocysts with differing morphologic properties that
contribute to its high-quality, under the assumption that different

“mechanisms” may complement and thus increase implantation
potential (and perhaps also decrease the risk of multiple pregnancy).
DISCOVER was designed as a general-purpose visual interpretability
of image-based classification models, and thus, can enable
computational-driven biological and clinical discovery in other
domains beyond IVF1–12. Capitalizing on the AI’s unprecedented ability
to automatically identify hidden semantic image patterns that are
buried in complex biomedical images, along with DISCOVER’s
counterfactual-based visual-guidance, there is significant potential to
open the door to the generation of new biological mechanistic insight
and testable hypotheses by reverse engineering machine predictions.

DISCOVER was designed to overcome limitations of alternative
image-based interpretability methods, especially toward inter-
pretability of biomedical images
Visual interpretability methods for deep learning image-based classi-
fication models can be categorized under two broad strategies, attri-
bution based and counterfactual based. Attribution based methods
compute saliency maps, indicating how much each pixel contributed
to the prediction19,20,46,57–59. This is achievedby computing the attention
of inner layers of the model by aggregating their activations, or gra-
dients, for each pixel60–62. Accordingly, saliency maps visualize loca-
lized regions particularly important for the classification. Such
approaches are not suitable when the classification-driving semantic
properties arenot necessarily localized (i.e., “global” attributes, such as
color, brightness, orientation or size), which is common in biomedical
images. Moreover, interpretability of saliency maps is less informative
because they aggregate all of the classification driving image proper-
ties to a single heatmap. Counterfactual explanation methods can be
subcategorized to those that incorporate latent space disentangle-
ment (such as DISCOVER) and those that do not. Counterfactual
explanation methods without disentanglement63–69, can concurrently
alter multiple image properties, thus generating less intuitive coun-
terfactual explanations. Counterfactual explanation methods that
incorporate disentanglement can be further partitioned to methods
that rely on annotated side information of image properties, for
example face images with annotated properties such as hair color,
mustache, or skin color70–72, and tounconditionedmethods thatdonot
use any furtherdata annotationsbeyond thebinary classification labels
for training the classification model22,24,73. DISCOVER benefits from the
advantages of both approaches of counterfactual explanations and
attribution based methods. Each latent feature is mapped to disen-
tangled classification-driving semantic image properties that can be
more intuitively understood by a humanobserver. DISCOVERdoes not
rely on side annotations, enabling it to discover and quantify unknown
subtle semantic image properties which discriminate one class from
the other.

Several of DISCOVER’s design choices were proposed by other
recent interpretability methods. Several studies included a generator
architecture, called “StyleGAN”, that was reported to generate repre-
sentations that are usually more disentangled than other generative
architectures22,74–76. Specifically, StylEx uses similar ideas to ours in
optimizing latent representations toward high quality counterfactual
explanations, along with classification-oriented encoding22. In addi-
tion, StylEx instance interpretation relies directly on the latent features
values which may suffer from the inherent non-linear associations
between latent features and the classifier score. These non-linear
associations could hamper latent feature ranking according to their
importance toward a specific instance classification prediction.
Moreover, all the latent features in StylEx representations are opti-
mized toward all of the model goals, without “specialized” features
geared toward specific interpretability goals. In a different study,
interpretable directions in the latent space, of a pretrained Generative
adversarial network (GAN) generator, were attained by training an
additional neural network to predict which latent feature was altered
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to produce a counterfactual explanation with respect to an observed
unaltered image77. DISCOVER’s architecture integrates and extends
these ideas. Specifically, our design contributions are (1) disentangle-
ment is explicitly enforced in the latent-to-image space (loss #5), (2) a
focused subset of the latent features is specifically enforced toward
classification-driven visual disentanglement (loss #6), (3) direct
weighting and ranking of the latent features according to their
instance-specificpredictive contribution, and interpretation according
to the discovered semantic properties that were attributed to each
latent feature. Altogether, as we empirically demonstrated in the
challenging domain of IVF, these design choices make DISCOVER a
designated general-purpose interpretability “discovery machine”
especially geared towardquantitative interpretationof knownandnew
classification-driving semantic image properties.

Interpretability of image-based classification models is absolutely
necessary in biomedical domains where mechanistic understanding
and transparency are crucial. Established attribution-based78–83 or
counterfactual-explanation based23,65,79,84–88 methods were applied,
out-of the box or after some adaptations, to interpret a variety of
biomedical image-based classification tasks. DISCOVER’s classification-
driven and disentanglement representations overcome the inherent
limitations in these methods and enabled us to quantitatively confirm
non-trivial interpretations, rather than relying on qualitative explana-
tions of representative images, and to systematically perform quanti-
tative instance-specific interpretations.

Limitations
Although DISCOVER provides a powerful way to uncover the semantic
image properties contributing to “black box” classification models’
prediction, it still suffers from several limitations. First, the DISCOVER
latent representation is optimized such that each latent feature
encodes independent classification-driving semantic image proper-
ties. However, this design does not prevent one latent feature to be
mapped to multiple independent semantic image properties. In other
words, one latent feature may encode entanglement of multiple
semantic image properties and still be disentangled in terms of the
latent representation. We did not observe examples of 1 (latent fea-
ture) - to - many (semantic image properties) in the datasets we
explored. Second,DISCOVERmaymiss semantic imageproperties that
are associated with the classification task. For example, although the
inner cell mass (ICM) was a criterion used to define the blastocyst’s
quality label, and thus used to optimize the classification model, we
failed to interpret a latent feature that encodes the blastocyst’s ICM
(Supplementary Fig. 11). One possible explanation for this inability to
interpret the ICM is that other morphological properties may collec-
tively contain the discriminative information encoded in the ICM, and
thus, DISCOVER cannot encode the ICM as a classification-driving
feature in its latent representation. Indeed, several studies reported
that ICM was not an independent predictor of live birth outcome89–91.
However, other studies reported that ICM had independent dis-
criminative value92,93. Another possible explanation is that ICM quality
could be explained by combining several more local morphological
properties, i.e., it is encoded by multiple classification-driving latent
features. Third, we applied DISCOVER to interpret high-performing
classificationmodels.Would DISCOVER enable interpretability for less
accurate classification models? How well? We made a first step in this
direction by showing that DISCOVER can consistently interpret the top
two classification-driving latent features in a moderately-performing
classifier. We speculate that less accurate classification models will
yield more ambiguous visual explanations, thereby making human
interpretation less straightforward, but still possible, as recently
demonstrated for models with lower AUCs around 0.717,23, but this is
still an open question that will be explored in future studies. Last, we
applied DISCOVER to interpret binary classification models. Moving
beyond binary classification should be possible by (i) connecting the

classification driving subset of latent features to a dense layer of size
equal to the number of classes (instead of one neuron) with a softmax
(insteadof a sigmoid) activation. (ii) changing the classification-driving
subset of latent features loss from binary to categorical cross-entropy.
(iii) interpreting the classification-driving semantic image properties
predictive of a specific class by identifying latent features that corre-
late with the corresponding softmax probability output. Multi-class
interpretability is left for future work.

Methods
IVF data collection, annotation and ethics
11,211 embryo time-lapse videos were retrospectively collected from
IVF cycles conducted at three clinic centers between March 2010 and
December 2021. Historical images of blastocyst-stage embryos and
metadata were provided by AIVF LTD. All procedures and protocols
were approved by an Institutional Review Board for secondary
research use (IRB reference number HMO-006-20). This retrospective
study using deidentified data followed the guidelines outlined by
Declaration of Helsinki for Medical Research involving Human Sub-
jects. This study involves noprospectively collecteddata. Therewasno
access to patients or requirement for informed consent. Fertilization
(time = 0) was determined by the presence of two pronuclei (2PN)
16–18 hours after insemination. All zygotes were placed inside the
EmbryoScope™ time-lapse incubator system (Vitrolife, Denmark),
incubated using sequential media protocol until blastocyst-stage, and
live imagedwith temporal resolution of 15–20minutes per frame. Each
gray-scale image (8 bit) was of size 500×500 pixels, with physical pixel
size of 294 × 294 um2. Z-stacks consisting of 7 slices, 15 µm apart, were
acquired at each time point, where the middle slice was used for
analysis. Analysis was performed for embryos at the blastocyst stage,
with typical onset of blastulation occurring ~103 hours post insemi-
nation based on manual annotation of blastulation and hatching (end
of blastulation). 6–10 frames from embryos at the blastocyst stage
were collected with an equal time interval between them. High satu-
rated images and images with a partially visible blastocyst were
excluded. Overall, approximately 67,000 images were used to train
DISCOVER. Blastocysts were manually annotated by embryologists,
just before hatching or before the removal of the embryo from the
microscope, according to the Gardner and Schoolcraft (known as
“Gardner”) scoring criteria, one of the most common morphology-
based blastocyst assessment criteria38. TheGardner criteria is based on
three morphology-based quality parameters: (Fig. 1A): Blastocyst
expansion status – volume and degree of expansion of the blastocyst
cavity (graded 1-6); inner cell mass (ICM) morphology – size and
degree of compaction of the mass of cells eventually forming into the
fetus (graded A-C); and Trophectoderm (TE) morphology – number
and cohesiveness of the single cell layer surround the outer blastocyst
eventually forming into the placenta26,94 (graded A-C). Blastocyst
expansion status was not annotated in our dataset. High quality blas-
tocysts were defined by corresponding ICM and TE labels of AA, AB, or
BA, low quality blastocysts by BB, BC, or CB.

Data preprocessing
The image pixel intensities were normalized to the range [0,1]. To
accommodate IVF-CLF training on a single GPU (~30hours on Nvidia
GeForce RTX 3090), the blastocysts images were preprocessed to
reduce their size, and following segmentation, non-blastocyst back-
ground was masked to reduce irrelevant information. Briefly, the
preprocessing steps were (1) semantic segmentation of the blastocyst
from the raw image, (2) centering the blastocyst in the image, and (3)
resizing the image to a lower resolution. Specifically, we trained a
mask-RCNN object detection model95 to detect 200 × 200 pixels
bounding boxes around each blastocyst, using 800 raw images with
manually annotated blastocysts’ bounding boxes. Hough-transform96

detected the blastocyst circular shape within the mask-RCNN
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bounding box and was used tomask the non-blastocyst image regions
and to center the blastocyst in the image. Next, a U-NET97 was trained
to segment the blastocyst using 500 out of the 800 images that were
successfully segmented by the Hough transform (based on manual
assessment). The U-NET architecture consisted of 4 convolutional
blocks for the encoder (down sampling) with 32, 64, 128 and 256 filters
and 4 convolutional blocks for the generator (up sampling) with
opposite number of filters. Each convolutional block included a 2D
convolution layer, batch normalization and “relu” activation. Max
pooling was used for the encoder blocks and up sampling convolution
was used for the decoder blocks. The U-NET outputs a binary mask. At
inference, the Mask-RCNN is first applied to the raw 500 × 500 pixels
images to output a bounding box localizing the region of the blas-
tocyst. Next, the U-NET uses the localized region and outputs a binary
mask, further localizing the blastocyst region. The Hough transform
fits a circular contour to the binary mask. This contour mask is multi-
plied by the Mask-RCNN output to obtain a blastocyst and masked
background image. Using the center 2D coordinate of the circular fit,
we can center the blastocyst in the image. Finally, the segmented
image is resized to 64 × 64 pixels using nearest neighbors interpola-
tion. The preprocessing pipeline is presented in Supplementary Fig. 1.
Images where the blastocyst was not segmented well (partially cut or
large background area remained) were excluded based on visual
inspection.

This approach of applying a segmentation to mask background
regions before training a classification CNN was used by others in the
domain medical imaging98,99, specifically in the context of IVF100–102.
Importantly, masking the background (via segmentation) is not a
mandatory pre-possessing step for DISCOVER interpretability as
demonstrated for the two natural images datasets.

Classification of high- versus low-quality blastocysts
An ImageNet pretrained VGG-19 network39 was fine-tuned by re-
training it to discriminate between high- versus low-quality blas-
tocysts (IVF-CLF classifier, Fig. 1C) using a balanced training
dataset of 977 high-quality and 977 low-quality blastocysts. Our
test dataset was composed of 108 high-quality and 108 low-
quality blastocysts. A negligible fraction of 2% of the blastocysts
from the training set had a blastocyst from the same cohort in the
test set, thus assumed to have the slightest effect on the classi-
fication performance and on the interpretability. The IVF-CLF
architecture was composed of the VGG-19 feature extraction part,
which includes several blocks in which each has a down sample
convolution layer followed by batch normalization, ReLU activa-
tion and a final flatting layer. The last fully connected layer of the
pretrained VGG-19 layer (which predicts the 1000 classes of
ImageNet) was replaced with a fully connected 16 node dense
layer and an output node dense layer with a sigmoid activation,
which corresponds to a probability of a high quality blastocyst (0-
1). The model was compiled with binary cross entropy loss and
Adam optimizer with a learning rate of 0.002. The IVF-CLF net-
work was trained for 100 epochs with a batch size of 32. We
performed augmentation by altering brightness, flipping, rotating
and by adding Gaussian noise. The performance of the IVF-CLF
reached a high classification performance of AUC = 0.93, which is
comparable to the performance reported for other recent models
and datasets for classification of high versus low quality blas-
tocysts (e.g., AUC = 0.98731, AUC > 0.919, AUC > 0.940).

DIsentangled COunterfactual Visual interpretER (DISCOVER)
architecture and optimization
DISCOVER was designed toward generative interpretability by simul-
taneously optimizing the following properties (Fig. 2A-B): high-quality
and realistic reconstruction of the latent space (loss #1), smooth and
realistic traversal of the latent space through its reconstructed images

(loss #2), domain-specific classification oriented encoding (loss #3),
decorrelated latent space (loss #4), counterfactual disentanglement
(loss #5), and a classification-driving subset of latent features that
correlated with the classifier that is being interpreted (loss #6). More
specifically.

Image reconstruction and latent space traversal (losses #1-2)
High-quality and realistic reconstruction and traversal of the latent
space was achieved with an adversarial autoencoder103 (AAE) that was
optimized toward a lower dimensional embedded representation of
blastocyst images by approximating the high-dimensional data dis-
tribution of the input images. This embedding, called latent space,
generates a compressed representation that faithfully encodes the
input blastocyst. Each blastocyst image is encoded to a point in the
latent space that can be decoded to reconstruct an image that appears
nearly identical to the original input. The adversarial loss forced the
encoded latent representation embedding towards an aggregated
posterior distribution similar to a normal distribution in order to
achieve a stochastic continuous model to sample from during
traversal103. The encoder (Supplementary Table 1) and decoder (Sup-
plementary Table 2) networks backbonewere based on residual blocks
similar to the ones introduced in Resnet50104. The outputs of the last
convolutional down sampling block were flattened to a vector fol-
lowed by a dense layer of 350 dimensions (determined empirically)
that defined the latent representation. The discriminator network was
composed of six fully connected dense layers (Supplementary
Table 3).

The reconstruction loss (loss #1) was a perceptual loss where the
reconstruction minimized the Euclidean distance between the hidden
layers of a VGG-19 pre-trained on ImageNet (called ImageNet-CLF).
Perceptual loss was preferred over minimizing L1 or L2 pixel-wise dif-
ferences because the latter lead to blurry, and less realistic recon-
structed images (Supplementary Fig. 4A). Perceptual loss enforces
spatial consistency between the real and the reconstructed images
which is important for human interpretability41,105. More technically,
for a blastocyst image x, and its corresponding reconstructed image
xrec, we extracted the hidden representations of the ImageNet-CLF
network: ImageNet-CLF(x)i and ImageNet-CLF(xrec)

i from layers i
=[block3_conv1, block3_conv2, block3_conv3, block4_conv1, block4_-
conv2, block4_conv3, block4_conv4, block5_conv1, block5_conv2,
block5_conv3, block5_conv4]. For every layer the mean absolute error
(MAE) was calculated and the overall losses was an average of these
per-layer (i) errors:

LImageNet CLF =
X

i

jImageNet� CLFiðxÞ,ImageNet� CLFiðxrecÞj ð1Þ

The latent generative-adversarial loss (loss #2) enforced a prob-
abilistic latent space such that samples were encoded into a con-
tinuous dense distribution. Adversarial losses are designed to fool a
discriminator: a discriminator network (D) is trained to predict if an
input vector comes from the latent representation of the encoded
images z, or drawn from the normal distribution with mean 0 and
variance of 1, znoise. The adversarial loss pushes the encoder to output
latent representations with a similar normal distribution. The dis-
criminator receives either the encoder output z or a noise vector znoise
and predicts the source (encoded versus noise). The discriminator loss
is a binary cross-entropy loss:

Ldisc = logðDðznoiseÞÞ+ logð1� DðzÞÞ ð2Þ

and the encoder (E) adversarial loss is:

Ladv = logðDðEðxÞÞ ð3Þ
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Classification oriented encoding (loss #3)
Subtle image differences can lead to major differences in the classifi-
cation outcome. Thus, to ensure that the visual semantic properties
influencing the classification decision are maintained in the recon-
structed image, we introduced a loss term that minimized the dis-
crepancy between the IVF-CLF hidden representations of the real
versus its corresponding reconstructed image (Fig. 2A). Similarly to
loss #1, we minimized the perceptual loss by extracting the hidden
representations of the IVF-CLF network: IVF-CLF(x)i and IVF-CLF(xrec)

i

from layers i = [block3_conv1, block3_conv2, block3_conv3, block4_-
conv1, block4_conv2, block4_conv3, block4_conv4, block5_conv1,
block5_conv2, block5_conv3, block5_conv4, flatten, dense]. For every
layer the mean absolute error (MAE) was calculated and the overall
losses was an average of these per-layer (i) errors:

LIVF CLF =
X

i

jIVF� CLFiðxÞ,IVF� CLFiðxrecÞj ð4Þ

Disentangled latent representation (losses #4-5)
The disentanglement module (Fig. 2B) was designed to encode the
image into a decorrelated latent space, where each latent feature is
independent (i.e., decorrelated) from the others (loss #4) and is
associated with a distinct visual property in the image (loss #5).

A decorrelated latent representation encourages each latent fea-
ture to be independent of other latent features. We included a loss
which whitens the latent features’ covariance matrix (i.e., driving it to
become a unit matrix), by optimizing toward diagonal values of 1 and
off-diagonal values to 0, similar to42:

LCOV = ðdiagðcovðzÞÞ � 1Þ=2+ ðoff diagðcovðzÞÞÞ=2,where z = encðxÞ
ð5Þ

Disentanglement of the latent representation enables traversal of
the latent space one feature at a time under the assumption that each
latent feature encodes an independent classification-driving visual
image features. To enforce that a specific latent feature is associated
with a specific image property weminimized the error of an additional
neural network that was trained to identify which latent feature was
altered upon alteration of a single latent feature. This was imple-
mented by (1) altering a randomly selected latent feature value in the
range of ±1.5 standard deviations, (2) using the decoder to reconstruct
a blastocyst image from the altered latent vector, (3) constructing a
“diff image”, the subtraction of the altered reconstructed image from
the unaltered reconstructed image, (4) A disentanglement network
(Supplementary Table 4) is trained to predict the index of the latent
feature that was altered from an input of the “diff image”. The disen-
tanglement network was implemented by down sampling convolu-
tions followed by a flattening layer and a dense layer equal to the size
of the latent space (Nz = 350) along with a Softmax activation, and
outputs a latent feature probability. Categorical cross-entropy (CCE)
loss was used to minimize the difference between the output predic-
tion vectors of the network after softmax activation ypred and the one-
hot encoding vector ytrue, where the altered latent feature value was
set to 1 and all other latent features were set to a value of 0:

Ldisentangle = 1=NZ �
X

ðyture � logðypredÞÞ ð6Þ

Note that the backpropagation of this loss term goes all the way
back through the decoder and encoder, thus enforcing visual disen-
tanglement as an inherent property of the latent representation.

Classification-driving subset of latent features (loss #6)
We designed a loss to partition the latent representation to two sub-
sets: (1) 14 latent features that are correlated to the IVF-CLF classifi-
cation score, i.e., associated with semantic properties driving the
classifier’s decision; (2) The other 336 latent features maintain high-
quality reconstruction without enforcing correlation to the IVF-CLF
score. We call the first subset “classification-driving”, and the latent
features in this subset can be altered to create reconstructed blas-
tocysts images with corresponding alteration in the IVF-CLF classifi-
cation output and thus can be used toward interpretation of the
semantic classification-driving physical properties that they encode.
The size of the classification driving subset was determined under the
assumption that a small subset would be more interpretable, and
justified empirically by attaining a lower loss in comparison to using 10
or 25 latent features (loss of 0.054 and 0.055, respectively, in com-
parison to 0.04 for 14 latent features). Of course, the number of clas-
sification driving latent features can be empirically tuned according to
the dataset. The counterfactual disentanglement network was imple-
mented as a single neuron trained to predict the IVF-CLF’s classifica-
tion score from the classification driving subset, whichwere the first 14
features in the latent representation. The latent features in classifica-
tion driving subset were connected via a dense layer to the single
classification neuron with a sigmoid activation (Zsubset_score), and the
binary cross entropy (BCE) between the prediction and the IVF-CLF
scores was minimized.

Lclassification subset = BCEðZsubset score,IVF� CLFðxÞÞ ð7Þ

Optimization
The necessity of all loss terms was verified via ablation experiments
(Supplementary Fig. 4). The overall loss of DISCOVER was defined as
the addition of all six loss terms, with weights λ1 = 5, λ2 = 1, λ3 = 5, λ4 = 1,
λ5 = 1, λ6 = 1, that were adjusted empirically by observing that the
reconstruction losses were converging slower than other losses. Thus,
the following loss was minimized during training:

LossAE = λ1*LImageNet�CLF + λ2*Ladv + λ3*LIVF�CLF + λ4*LCOV
+ λ5*Ldisentangle + λ6*Lclassification subset

ð8Þ

DISCOVER was trained with Adam optimizer, learning rate of
0.0002 and batch size of 64. It was trained for 30 epochs. In each
iteration, images were chosen randomly and the following augmen-
tations were performed for the IVF dataset: (1) brightness—randomly
multiplying each image by a factor of −0.2 to 0.2. (2) flip—randomly
flipping images horizontally and vertically. (3) rotation—randomly
rotating images by 0, 90, 180, or 270 degrees. (4) noise—introducing
per-pixel Gaussian noise was added with mean 0 and standard devia-
tion of 0.1. (5) saturation—random pixels’ gray levels were saturated.

Visualization of counterfactual alteration
Counterfactual alterations, the changes in image properties associated
with the change of a latent feature, were visualized using the Structural
Similarity Index (SSIM)43. SSIM has been demonstrated to be in
agreementwith howhumans observe differences between two images.
SSIM evaluates the similarity of two images by comparing spatially
matched pairs of image patches using the average, standard deviation
and covariance of each patch. For visualization, each pixel was
assigned the value 1-SSIM, corresponding to the dissimilarity between
the two corresponding patches of 7 × 7 pixels surrounding the pixel.
This was followed by smoothing with a convolution with a gaussian
filter of size 3 × 3 to define what we call the “visual counterfactual
alteration“.
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Quantitative validation of latent features interpretation. To sys-
tematically and quantitatively link latent features #0 and #10 to their
corresponding interpreted morphological properties, we had to
reduce the confounding effect of the correlated blastocysts’ size and
TE. Thus, we matched pairs of blastocysts according to having one
similarmorphological property, and theothermorphologicalproperty
being different. More specifically, to verify that latent feature #0 is
associated with blastocyst size, we paired blastocysts according to (i)
same embryologist-annotated TE grades, i.e., both blastocysts with
grade ‘A’or bothwith grade ‘B’; (ii) at least 30%difference in their sizes,
i.e., the size of the larger blastocyst was ≥1.3 times of the smaller
blastocyst. Blastocyst size was computed from the segmented blas-
tocyst masks as described earlier (see the subsection “Data pre-
processing”). A total of 5888 blastocysts’ pairs were matched
according to these criteria. To measure the association between each
of the 14 classification-driving subsets of latent features and the blas-
tocyst size, we calculated the distribution of signed differences of each
latent feature between the larger and the smaller blastocysts in the
matched pairs (Fig. 4A). Importantly, the subtraction order wasflipped
for latent features that were negatively correlated with the IVF-CLF
scores (Fig. 2F). The purpose of adjusting the subtraction order
according to the correlation signwas to enable direct ranking ordering
of the associations between the latent features and the blastocyst size,
for matched blastocysts (with the same TE annotations), according to
the median of each (latent feature specific) signed differences dis-
tribution (Fig. 4B, C). The direct comparisonbetweendistributionswas
enabled by z-score normalization of the latent features.

Similar analysis was performed to verify that latent feature #10
was associated with the blastocyst TE quality. Blastocysts were paired
according to (i) different embryologist-annotated TE grades, i.e., one
blastocystswith grade ‘A’ and the otherwith grade ‘B’; (ii) nomore than
7% difference in their sizes. A total of 808,326 blastocysts’ pairs were
matched according to these criteria. Similarly to the analysis that
linked latent feature#0 toblastocyst size,wemeasured the association
of each of the 14 classification-driving subsets of latent features and
the blastocyst TE quality, where the order of subtraction was deter-
mined according to the sign of the correlation between the latent
feature values and the IVF-CLF scores.

Instance interpretation
To quantify the latent features importance to the classification pre-
diction we used Shapley additive explanation (SHAP)13. We applied
SHAP on DISCOVER’s single layer perceptron which receives as input
the 14 classification-driving subset of latent features and is connected
to a single neuron upon which a sigmoid activation is applied to pre-
dict the IVF-CLF score (Fig. 6A). The estimated average SHAP values for
each latent feature was calculated using a random subset of 200 sam-
ples (Supplementary Fig. 9).

Embryologists qualitative feedback and quantitative validations
Embryologists provided qualitative feedback and participated in a
user-study to quantitatively validate our interpretations. For qualita-
tive feedback of GradCAM’s interpretability, two embryologists were
presented with visual explanations of 18 blastocysts (those shown
Fig. 1E) obtained by GradCAM, highlighting the important localized
regions of the IVF-CLF’s final convolutional block. The embryologists
were asked whether the GradCAM visualizations provide insight
regarding the blastocyst’s morphological properties that were learned
by the model. For qualitative feedback of DISCOVER’s disentangle-
ment and interpretability, two embryologists were presented with
counterfactual visual alterations of the same blastocyst according to
the alteration (±3 standard deviations) of the five latent features most
correlated to the IVF-CLF (see example in Fig. 3B, this evaluation was
performed for 3 blastocysts). The embryologists were asked to inter-
pret the morphology that changed between the counterfactual

explanations for each of the latent features. To qualitatively validate
our interpretation of latent features #0 and #10 as encoding the
blastocyst size and TE, respectively, two Embryologists were (i) pre-
sented with the counterfactual visual alterations of 16 blastocysts
(Supplementary Fig. 5), (ii) presented with a sequence of gradually
altered traversals (±3 standard deviations) along each latent feature
(Fig. 3C), (iii) presented with a sequence of nine blastocysts randomly
selected and ordered according to their corresponding latent feature
values, in equal intervals along the range of ±3 standard deviations, for
latent features #0 and #10 (Fig. 3D). For each of these evaluations, the
embryologists were asked to describe which visual property was
mostly dominant. Latent feature #11 was interpreted and qualitatively
validated to be associated with the blastocoel density by presenting to
a trained embryologist and two other IVF experts (i) counterfactual
visual alterations of 5 blastocysts (Fig. 5B), (ii) a sequence of 9 real
blastocysts that were randomly selected from predefined intervals of i
latent feature #11 in monotonically increasing order (Fig. 5C). To
quantitatively verify that latent features #0 and #10 encode the blas-
tocyst size and TE, respectively, we performed an empirical user study.
For the user study we matched 39 blastocyst pairs according to a
similar value (<0.1) of latent feature #0, and a different value (>0.5) of
latent feature #10. values, and 36blastocystpairs according to a similar
value (<0.05) of latent feature #10 and different value (>0.6) of latent
feature #0 values. The different thresholds for “similar” or “different”
were selected to achieve a close number of blastocyst pairs selected
according to eachof the twoconditions. These 75blastocystpairswere
presented, in a random order, to an embryologist that was asked to
determine whichmorphology (size or TE) wasmore different between
the two blastocysts in each pair. Additionally, the embryologist was
asked to determine which blastocyst within each pair had a higher
grade of that dominant morphology. A confusionmatrix and accuracy
results of our user study are reported in Supplementary Fig. 8.

To qualitatively verify the interpretation of specific blastocysts’
classification (see the subsection “Instance interpretation”), three high
quality and three low quality blastocysts were randomly selected
according to the following criteria: two with SHAP-dominating latent
feature #0 (Fig. 6B left), two with SHAP-dominating latent feature #10
(Fig. 6Bmiddle), and twowith SHAP-dominating latent features #0 and
#10 (Fig. 6B right). These six blastocysts were presented to an
embryologist who visually verified the instance-specific SHAP feature
importance according to our mapped interpretation (latent feature
#0/#10 encode size/TE). Similarly, three blastocysts composed of two
positive and one negative SHAPE-dominating latent feature #11 were
randomly selected and visually verified the instance-specific SHAP
feature importance according to our mapped interpretation (blas-
tocoel) by the embryologist.

Alternative visual interpretability methods. We applied three alter-
native widely-used visual interpretability: GradCAM20, SHAP13 and
LIME46. To calculate the GradCAM saliency maps we extracted the last
convolutional layer of the IVF-CLF model and calculated a gradient
dependent weighted combination of the feature maps. To apply LIME
we installed the lime python package (lime 0.2.0.1). The image was
segmented into “superpixels” which were groups of neighborhood
pixels with similar color or brightness. These superpixels were ran-
domly turned off (pixel values changed to zeros) and the altered image
was evaluated by the IVF-CLF model. Finally, a surrogate linear model
weighted each superpixel according to its classification output such
that areas with low weighting were masked. This enabled us to visua-
lize the superpixels associated to the correct versus incorrect class. To
apply SHAP we installed the shap python package (shap 0.45.0).

MRI brain images: data and analysis
The Alzheimer’s dataset50 was collected and clinically annotated by
radiologists. The dataset contains 6400 aligned and cropped gray-
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scale images (176 × 208 pixels) split to 4 classes (non-dementia—3200
images, very mild—2240 images, mild—896 images and moderate—64
images). We trimmed 20 pixels from each side to remove background
nuisance and the image was then resized back to 64 × 64 pixels. All
images were in grayscale and divided by 255 to the range [0-1]. A VGG-
19 classification model was trained to discriminate non-dementia ver-
sus very mild and moderate dementia. Images with the “mild” label
were discarded to train a binary classifier. The training followed the
same procedure described for IVF-CLF with no augmentations. The
training data consisted of 3100 images from the non-dementia class
and 2142 images from the verymild andmoderate classes. The AUC for
the test data (100 images for each class) was 0.91 (Supplementary
Fig. 12A). We call this model AD-CLF.

We trained a DISCOVER network, without changing the archi-
tecture and the hyperparameters, to interpret AD-CLF. The training
data included 6101 images and 299 images for test (including images
labeled as “mild”). We did not use augmentation during training
because all images in this dataset were aligned, centered and
illumination-equalized.

Statistics and reproducibility
ROC-AUC (sklearn.metrics.auc function) was used to evaluate the
performance of the classifier models (Fig. 1D, Supplementary
Figs 7–10). Pearson correlation (scipy.stats.pearsonr function) was
used to assess the inner correlations between the latent features
(Supplementary Fig. 2) and the correlationbetween each latent feature
and classifier score (Fig. 2F). Mann–Whitney-U test (scipy.stats.mann-
whitneyu) was used to calculate the p-value of the 14 classification-
driving subset of latent features out of the entire latent feature
representation. No statistical method was used to predetermine sam-
ple size. No data was excluded from the analysis and experiments were
not randomized. The Investigators were not blinded to allocation
during experiments and outcome assessment.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Thedata that support thefindings of this study areownedbyAIVFLTD.
All data (embryo time-lapse images and associated annotations) were
retrospectively collected and de-identified prior to data transfer and
analysis under ethical agreements outlined in the Data Sharing
agreement signed by AIVF LTD. and each clinic separately. Data was
not shared between clinics. Third party restrictions apply to the
availability of the de-identified data under the terms authorized in the
Data Sharing agreement. Request to access thedata canbeobtainedby
submitting a request to Mrs. Daniella Gilboa (daniellag@aivf.co).
Requests will be reviewed according to the intended use of the data,
risk of confidentiality loss, and data sharing policy of AIVF LTD. The
Alzheimer’s disease dataset is available https://www.kaggle.com/
datasets/tourist55/alzheimers-dataset-4-class-of-images. The methods
presented are not specific to the datasets used in this study and users
can train and test the deep learning model on any relevant imaging
data. Correspondence and requests for materials should be addressed
to Oded Rotem (roded314@gmail.com) or Assaf Zaritsky
(assafzar@gmail.com).

Code availability
The source code (Python with Tensorflow 2.2) for training a binary
classifier, training a DISCOVER interpretability model and a demon-
stration of performing blastocyst classification interpretability using a
trained DISCOVER model are publicly available, https://github.com/
zaritskylab/DISCOVER. This repository also includes a trained model

for Alzheimer’s disease MRI classification and its corresponding DIS-
COVER model.
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