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Abstract

Tissue development occurs through a complex interplay between many individual cells. Yet, the

fundamental question of how collective tissue behavior emerges from heterogeneous and noisy

information processing and transfer at the single-cell level remains unknown. Here, we reveal

that tissue scale signaling regulation can arise from local gap-junction mediated cell-cell

signaling through the spatiotemporal establishment of an intermediate-scale of transient

multicellular communication communities over the course of tissue development. We

demonstrated this intermediate scale of emergent signaling using Ca2+ signaling in the intact, ex

vivo cultured, live developing Drosophila hematopoietic organ, the Lymph Gland (LG).

Recurrent activation of these transient signaling communities defined self-organized signaling

“hotspots” that receive and transmit information to facilitate repetitive interactions with

non-hotspot neighbors, transfer information across cells, and regulate the developmental

progression of hotspots. Overall, this work bridges the scales between single-cell and emergent

group behavior providing key mechanistic insight into how cells establish tissue-scale

communication networks.
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Introduction
The emergence of collective cell behavior is an essential component of many basic biological

phenomena such as tissue morphogenesis (Julicher and Eaton, 2017), cell migration (Mayor and

Etienne-Manneville, 2016), or bacterial quorum sensing (Bassler, 1999; Surette et al., 1999). Key

to understanding collective cell decision making is elucidating how local information transfer

between cells is integrated in space and time. This spatial and temporal integration of

information is essential for regulating the emergence of collective behavior at the multicellular

scale (Capuana et al., 2020; Toda et al., 2019). The Drosophila hematopoietic organ, the Lymph

Gland (LG), is a powerful, genetically tractable, model to study how information is integrated in

space and time to facilitate collective cell behavior. The LG contains dozens of stem cell-like

blood progenitors that are largely quiescent but can be collectively activated in certain

conditions, such as in response to pathogenic infection, to rapidly produce hundreds of highly

differentiated blood cells with infection fighting characteristics (Banerjee et al., 2019; Evans et

al., 2022). Long-term culture and live imaging of the intact LG showed that calcium (Ca2+), that

is transmitted between blood progenitor cells through gap-junctions, mediated essential

information transfer across large distances in the LG (Ho et al., 2021). Ca2+ levels serve a key

function in controlling blood progenitor fate as the activity of multiple pathways that regulate

progenitor behavior, including JAK/STAT and CaMKII signaling, is modulated by the amount of

Ca2+ in the cell at a specific time (Ho et al., 2021; Shim et al., 2013). Gap junctions, intracellular

channels that directly link adjacent cells to allow them to exchange ions and other small

molecules, can help cells form signaling networks (Ho et al., 2021; Mathews and Levin, 2017;

Smedler et al., 2014). In characterizing, at the population scale, the gap-junctions based,

Ca2+-mediated, multicellular signaling network in the LG we observed synchronized cell pairs

that were located up to 38 cell diameters (~190 µm) from one another. Importantly, functional

studies illustrated that the gap-junction mediated Ca2+-signaling network was required for proper

regulation and function of the LG by coordinating fate decisions at the population scale (Ho et

al., 2021). A key question that emerged from our previous results was how the local information

transfer between adjacent cell pairs formed a global multicellular network. Specifically, we

wanted to characterize and understand the intermediate stages that allowed cell-cell signaling

exchanged between individual cells to become collective signaling.
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Here we identified, using spatiotemporal analysis of Ca2+-signaling in live intact LGs, the

gradual formation of communicating communities of 3-14 progenitor cells over the course of

development, through intercellular gap junction-mediated signaling. Recurrent signaling activity

of these communities formed hotspots of local information transmission highlighting

heterogeneity in intercellular information transfer as a potential contributor to collective decision

making. Taken together, our results explain how the exchange of information between individual

cells in the Drosophila LG becomes an emergent behavior involving multiple cells. This

provides insight into the bridging of the scales between single cell and emergent group behavior.
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Related Work
My thesis lies in between the computational and experimental disciplines within the field of

computational cell and developmental biology .

  Cell signaling

Cell signaling denotes the state of the cell and its capability to receive, process, and transmit

molecular signals within its local environment and internally (Kholodenko BN 2006). The

transmission of such signals between cells is done through either the extracellular space (Fujii et

al., 2017) or through intercellular mechanisms, such as the gap-junction channels, that establish

connections among neighboring cells (Kumar et al., 1996; Hervé JC et al., 2012). The study of

intercellular signaling holds paramount importance in various biological domains, such as

genetics (Mittelbrunn et al., 2012), oncology (Brücher et al., 2014), and immunology (Hodgkin

et al., 1998). Intercellular signaling is often a heterogeneous process due to intrinsic cell-to-cell

variation in gene expression levels or protein modifications (Elowitz et al., 2002; Gut et al.,

2018; Raj and van Oudenaarden, 2008), and often results in varying dynamics of single-cell

signaling even when exposed to identical external stimuli (Elowitz et al., 2002; Swain et al.,

2002). This intercellular variation, commonly referred to as intercellular heterogeneity, persists

even among cells sharing the same genetic background, further complicating our understanding

of multicellular processes.

  Cell-cell communication

Cell-cell communication, known also as intercellular communication, is the mechanism

governing interactions between two or more cells. Intercellular communication has profound

influence over proliferation, differentiation, migration, and stimulation, with disruptions in

cellular communication linked to diseases (Lai et al., 2004). Notable instances of intercellular

communication encompass immune-tumor cell interactions (Schürch et al., 2020),

communication within neural networks (Huang et al., 1998), mRNA transfer through

microtubules (Mili et al., 2008), and formation of neural and optical synapses (Scheiffele 2003).
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These instances of intercellular communication often rely on a signaling mechanism, in which

ions and small molecules transmit directly from one cell to its neighbors (Hervé JC et al., 2012).

Time-lapse fluorescence microscopy has evolved into a standard experimental technique,

significantly advancing our comprehension of cellular signaling processes (Purvis and Lahav,

2013; Albeck et al., 2013; Ryu et al., 2015), shedding light on the significance of signaling

dynamics on intercellular communication processes. Studies carried on the readouts of

fluorescent biosensors, obtained by live-cell imaging, have unveiled that cells leverage gap

junctions to receive regulatory cues either from their environment or neighboring stem cells

(Speder and Brand, 2014; Lacar et al., 2011). Remarkably, these cues transmitted through gap

junctions have been shown to influence stem cell behavior in the brain of flies (Speder and

Brand, 2014), stimulate neural progenitor proliferation in the mouse brain (Malmersjö et al.,

2013), and govern blood progenitor maintenance and blood cell differentiation in the Drosophila

lymph gland (Ho et al., 2021). Recent study showed how individual cells in different biological

systems coordinate their signaling activity to achieve a wave-like pattern, suggesting a highly

synchronized multicellular organization (Gagliardi et al., 2023).

Quantification methods for cell-cell communication

Quantifying cell-cell communication driven by signaling can be achieved through the assessment

of coordinated cell activation within a biological system. A study conducted on an intact

Drosophila lymph gland, which provided the data for my research, investigated the cells’

calcium signaling using live imaging microscopy, and measured the degree of communication

between two cells using the Pearson correlation between their calcium signal time series (Ho et

al., 2021). Other studies have delved into the different roles assumed by individual cells in the

context of multicellular synchronization emergence. For instance, researchers investigated

monolayers of endothelial cells subjected to varying levels of shear stress induced by blood flow

(Hill et al., 2010; Yin et al., 2007; Zamir et al., 2022). They employed statistical measurements

including Granger Causality, Estrada index, and Delaunay triangulation to both classify the role

of each cell in the communication network, and to measure the global signaling synchronization

of the population (Zamir et al., 2022). Another research done in the field of multicellular

collective behavior developed a computational tool named ARCOS, which I also employed in
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my research, that detects spatio-temporal signaling patterns in cell collective (Gagliardi et al.,

2023). Their approach involved determining the temporal activation state of each cell (active or

inactive) using various binarization techniques on the cell’s signal readouts. By applying a

customizable set of rules on the spatial locations and the binarized signals of all cells in the

population, they were able to locate collective multicellular communication events and track

their propagation patterns throughout the population (Gagliardi et al., 2023).

A recent study established a connection between the regenerative capacity of mouse epidermis,

the communication among its stem cells through calcium signals, and the specific phases of the

cell cycle in which these stem cells are situated, revealing how cells at a specific phase are

crucial in facilitating a healthy epidermal regeneration (Moore et al., 2023. The researchers

developed an unsupervised machine learning technique, which generates spatio-temporal

representations of the entire cell population based on the global signaling dynamics at a certain

point in time (Bhaskar et al., 2023 Preprint; Moore et al., 2023). Applying dimensionality

reduction methods on these representations resulted with a time series of 3-dimensional

coordinates, representing the temporal change in global signaling dynamics (Moon et al., 2019;

Moore et al., 2023). To characterize the global signaling dynamics they quantified the shape of

the time series trajectory, defined by its 3-dimensional coordinates, using persistent homology

techniques. Applying this technique on spatiotemporally organized populations with correlated

signaling activity resulted with a were characterized with a continuous shaped trajectory, where

less organized populations resulted with inconsistent trajectories with large gaps between

successive timepoints (Moore et al., 2023).

Inspired by these works, I am using the time-series data of the Drosophila lymph gland blood

progenitors to characterize collective communication at the intermediate-scale of transient

multicellular communities. This is accomplished by utilizing the ARCOS framework to cluster

blood progenitors that are highly synchronized in their calcium signaling during the Drosophila’s

hematopoiesis process.
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Results

Propagating intercellular Ca2+ signaling forms communicating

communities in the Drosophila lymph gland

We investigated Ca2+ signaling in individual blood progenitors using live imaging of intact, ex

vivo cultured, LGs (Fig. 1A). By manual qualitative selection of adjacent blood progenitor pairs,

we previously showed that Ca2+ signals propagate between neighboring blood progenitor pairs

and this propagation is mediated by gap junctions (Video S1) (Ho et al., 2021). To systematically

and quantitatively characterize the patterns of signal synchronization across scales in-depth, we

measured the temporal correlation between Ca2+ signals in all blood progenitor pairs in the LG.

This analysis identified a negative correlation between the distance between blood progenitor

pairs (termed cell pair distance) and the level of coordination in their Ca2+ signals (termed cell

pair correlation). This means that, on average, closer blood progenitor pairs were more

synchronized in terms of Ca2+ signaling than distant pairs (Fig. 1B, Fig. S1A). These data

showed that the sub-populations of the most highly synchronized cell pairs were located within a

distance of approximately 14 µm from one another, about two cell diameters apart.

Indeed, partitioning the data to close (≤ 14 µm) versus far (≥ 14 µm) cell

pairs showed that close pairs were more likely to be in a higher level of synchronization (Fig.

1C, Fig. S1B). The subpopulation of highly synchronized close cell pairs highlighted the

heterogeneity in cell-cell information transfer. However, it was still unclear how this local

cell-cell synchronization propagates from the scale of cell pairs to the multicellular scale.

To detect and quantify collective spatiotemporal signaling events, i.e., signaling events that

involve more than two cells, we applied a computational method known as the “Automatic

Recognition of COllective Signaling” (ARCOS) (Gagliardi et al., 2023). ARCOS binarizes the

single blood progenitor Ca2+ signal, according to its magnitude, to “active” (Ca2+ peak) or
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“inactive”, followed by spatiotemporal clustering of cells that are synchronously active (peaks

≤ 15 seconds apart). This analysis defines “collective signaling events” that we refer to as

local transient communities of blood progenitor signaling (Video S2). Every community consists

of a minimum of three cells that were active simultaneously or within a 15-second delay. Using

ARCOS, we were able to monitor the formation and disintegration of a community (Fig. 1D,

Video S3): following an initial Ca2+ spike, subsequent activation of adjacent blood progenitors,

as marked by red dots connected by a white arrow, initiated a 3-cell community (Fig. 1D, 0-7

seconds). The community gradually grew, which was observed as Ca2+ activation in adjacent

cells (Fig. 1D, red dots and white arrows, 11-23 seconds) and shrunk by deactivation of cells in

the community (Fig. 1D, yellow arrowheads, 18-25 seconds). Throughout its evolution, this

community involved 6 cells (Fig. 1D, marked by a white dashed polygon, 25 seconds) with a

maximum of 5 cells being active simultaneously (Fig. 1D, 16 seconds). Our analysis identified

communities of local intercellular transfer of signaling information involving 3-14 blood

progenitors per community, with a median community size of 4 cells and 30% of communities

having at least 5 participating cells (Fig. S2, example in Video S3). Two potential confounders of

this analysis were the stochastic co-incidence of activation events and the presence of areas with

higher local cell densities, both of which may lead to the detection of spurious collective

signaling events by ARCOS (Fig. S3). To mitigate these potentially confounding factors, we

spatially shuffled the cells (i.e., randomized their location), applied ARCOS to identify collective

signaling events in the spatially permuted experiment, and recorded the mean number of

collective signaling events per cell (mean events per cell, MEC) across the entire population. We

repeated the sequence of random shuffling and ARCOS analysis 1,000 times (Fig. 1E) and

recorded: (A) the statistical significance - the fraction of times that the MEC of these in silico

spatially permuted experiments were equal or exceeded the MEC of the observed (un-permuted)

experiment, and (B) the magnitude - the mean ratio between the experimentally observed MEC

and each of the in silico spatially permuted MEC. All replicates, but one (11/12), showed

significant elevation in magnitude of MEC, by a factor of 1.2-3.3 fold in respect to the in silico
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permuted experiments, indicating that the collective signaling events were a local property of this

multicellular system (Fig. 1F). Altogether, our data suggests that local cell-cell information

transfer integrates in space and time to form multicellular communities of Ca2+ signal

propagating blood progenitors in live intact ex vivo cultured LGs.
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Gap-junctions mediate the propagation of Ca2+ signals in blood

progenitor communities

We previously demonstrated that gap-junctions were required for cell to cell Ca2+ propagation

between the blood progenitors in the Drosophila LG (Ho et al., 2021). To assess the role of

gap-junctions in the formation of intercellular communities, we analyzed ex vivo cultured LGs

using live imaging under different conditions where gap-junction were perturbed. Specifically,

we used both a genetic and a pharmaceutical based approach to disrupt gap junction-mediated

communication between blood progenitors. First, we used an RNA interference (RNAi)

approach to knock down the expression of the gap junction protein Innexin 4, known by its gene

name zero population growth, or zpg (Bauer et al., 2005). We have previously shown that Zpg is

the main gap junction channel mediating Ca2+ signaling between blood progenitors (Ho et al.,

2021). Second, we used the gap-junction blocker known as carbenoxolone (CBX). We preformed

RNAi-mediated knockdown of zpg (N = 8), a low dose CBX treatment (3.125 µM; N = 3), a

high dose CBX treatment (12.5 µM, N = 4), or a control where we first treated with 100 µM

CBX and then washed it out (N = 4). Analysis of these different treatment groups showed that

gap-junction inhibition led to a drastic decrease in the fraction of experiments with significant

local communities (Fig. 1G), the magnitude of collective signaling communities (Fig. 1H), and

the intercellular signaling propagation speed between adjacent cells (Fig. 1I). Intriguingly,

washout experiments that were previously shown to rescue the network properties and cell-cell

propagation (Ho et al., 2021), did not rescue the fraction of collective signaling-event

communities (Fig. 1G), but did rescue the magnitude of communities (Fig. 1H) and the

intercellular signaling propagation speed between adjacent cells in a transient community

(termed intercellular signaling propagation speed, Fig. 1I). This suggests that perturbation of

gap junction-mediated communication may have a long lasting effect on the signaling

community that persists even after CBX is removed. The association between the LG’s mean cell

activation rate (i.e., frequency of cell activation), mean local cell density, and the MEC rate,
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meaning the mean frequency that a cell participates in a transient community, were maintained

for most gap junction inhibition perturbations (Fig. S4A-C). However, Zpg depletion (using

RNAi) or inhibition (using CBX) led to increased cell activation, i.e., higher frequency of Ca2+

spikes, but reduced MEC rate for the same activation level (Fig. S4D), suggesting a

compensation mechanism where Zpg-depleted or inhibited cells try to compensate for reduced

cell-cell communication capacity by increasing their activity. These results validate the critical

role of gap-junctions in the formation of Ca2+-based intercellular communities.

16



17



Figure 1. Blood progenitor cell-cell communication forms communities of propagative Ca2+

signaling.
(A) Representative confocal image showing Ca2+ signaling activities in blood progenitors of a LG
visualized using GCaMP6f (in green). Red crosses indicate the center of individual cells. White circles
indicate adjacent blood progenitors to the cell marked by the red circle, at distances of 7 µm and 14 µm
from it correspondingly (see also Video S1). Scale bar = 10 µm. (B) Spatial analysis of blood progenitor
pairs that showed a statistically significant correlation (p < 0.05) in their temporal Ca2+ signals. Each data
point (blue) represents a cell pair. Cell pairs Ca2+ Pearson correlation was correlated with the cell pairs
distance. = 57, = 385, Pearson correlation between cell pair Ca2+ correlation and distance =𝑁

𝑐𝑒𝑙𝑙𝑠
 𝑁

𝑝𝑎𝑖𝑟𝑠
-0.244, p-value = 0.003. See also Fig. S1A for analysis of all cell pairs. (C) Cumulative distribution of
Pearson correlation of the close (orange; N = 98, µ = 0.246, σ = 0.187) and far (blue; N = 287, µ = 0.160,
σ = 0.084), significantly Ca2+ correlated blood progenitor pairs (same pairs as in B). Each value in𝐹

𝑔
(𝑥)

the plot is the probability of a pair in group to have a Pearson correlation coefficient greater than .𝑔 𝑥
Kruskal-Wallis statistical test verified a significant difference between the two distributions (p-value <
0.0001). See also Fig. S1B for analysis of all cell pairs. (D) Representative confocal images showing a
Ca2+ signaling propagation event, detected by ARCOS, that defined a transient community involving 6
blood progenitors (see Results text and Methods). GCaMP6f is labeled in green. The center of each cell is
marked in red (active, i.e., showing Ca2+ influx) or blue (inactive). Time (T, in second) is annotated in
each frame. Orange polygons visualize the cell centers transiently participating in a community in each
frame. White arrows indicate the inclusion of new activated cells in the community, yellow arrowheads
indicate the deactivation and exclusion of cells from the community. All the cells that participate in the
community throughout its evolution are marked in the last frame (T = 00:25) in a dashed white polygon.
Scale bar = 5 µm. (E) Schematic of the spatial shuffling analysis (see also Methods). (1) Single cell
segmentation and extraction of Ca2+ time series. (2) Random spatial shuffling of the Ca2+ time series of all
cells, repeated 1000 times, correspondingly generating spatially permuted experiments. (3) ARCOS
binarization: Ca2+ peak detection (red). (4) ARCOS community detection (red, white is GCaMP6f).
Recording of the mean collective events per cell (MEC) and statistical comparison of MEC for observed
versus in silico permuted experiments. Scale bar = 5 µm. (F) Analysis of MEC magnitude (N = 12 LGs).
Mean ratio between MEC of the observed and the in silico permuted experiments. Ratio of value 1
(dashed horizontal line) implies no change in the magnitude. Bootstrapping significance test showed
spatial significance for 11/12 LGs (color filled circles). (G-I) Gap junction inhibition experiments.
Wild-type LGs (N = 12), RNAi-mediated zpg knockdown (N = 8), 3.125 µM CBX (N = 3), 12.5 µM
CBX (N = 4), and CBX washout (N = 4). Statistical analyses: * - p < 0.05, ** - p < 0.01, *** - p < 0.001,
**** - p < 0.0001. (G) Spatially significant experiments. For each experimental condition gray indicates
the number of insignificant and color indicates the number of significant LGs. Significance was
determined using Fisher's exact test. (H) Analysis of MEC magnitude. Each data point corresponds to one
LG. Significance was determined using the Kruskal-Wallis test to evaluate the differences between the
wild-type and the other conditions. (I) Analysis of intercellular signaling propagation speed between
adjacent cells in a community. Each data point (red) represents the average cell-cell propagation speed
calculated according to the relative activation timing between adjacent pairs in each transient community
(see Methods). Wild-type (N = 113 communities, mean information spread µ = 1.63 µm/second),
RNAi-mediated zpg knockdown (N = 39, µ = 0.99 µm/second), 3.125 µM CBX (N = 62, µ = 1.35
µm/sec), 12.5 µM CBX (N = 1, µ = 0 µm/second), and CBX washout (N = 71, µ = 1.41 µm/second).
Statistical significance was determined using the Kruskal-Wallis test to evaluate the differences between
the wild-type and the other conditions.
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Recurrent activation of communication communities forms hotspots

of local information transmission hubs

We next asked whether the same cells participate in multiple (transient) signaling communities,

which, if true, could suggest that these communities act as signaling communication “hubs” that

repeatedly receive and spread information to synchronize the multicellular network. To

quantitatively assess this possibility in wild-type LGs, we recorded for each cell the number of

times it participated in signaling communities. Visualization of the number of times each cell

participated in a community revealed spatial heterogeneity with recurrent activation of specific

communities, that we call “hotspots”, involving groups of spatially adjacent cells with enriched

participation in signaling communities with respect to the population (Fig. 2A, Fig. S5A-E, criteria

for hotspot identification are detailed in the Methods). We identified hotspots that met these criteria

in 9 out of the 12 wild-type (non-treated) LGs. The number of hotspots per LG ranged between 1 to

3 with each containing between 3 to 15 cells. To verify that hotspots were not a mere consequence

of increased cell activation we devised a bootstrapping-based statistical test (Fig. 2B-D). First, we

matched and replaced at least 50% of the cells in the hotspot with other cells in the same experiment

that did not take part in the hotspot and had, at minimum, the same amount of activations. Second,

we switched the Ca2+ time series for each pair of matched hotspot and non-hotspot cells, and then

detected collective signaling events in this in silico, spatially permuted, experiment (Fig. 2D).

Third, we recorded the MECs for cells participating in the hotspot of the in silico permuted

experiment. We repeated these steps of switching “hotspot” with non-hotspot cells with at least the

same number of Ca2+ activation, up to 1,000 times for each hotspot, recorded the difference between

experimentally observed hotspots and their in silico permuted versions, and determined the

statistical significance. Statistical significance was determined by calculating the fraction of

permutations where the hotspot MEC values in the in silico experiments were equal to or exceeded

the MEC values of the observed (wild-type, non-permuted) experiment. This analysis showed a

dramatic decrease in the MEC following spatial permutation (Fig. S5), statistically validating 8 of

14 hotspots, spread over 5 of the 12 live intact ex vivo cultured LGs (Fig. 2E). Qualitative

observation of the validated hotspots locations did not identify a typical spatial pattern in respect to
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the LGs. Gap-junction perturbations, even after washout, showed reduced numbers of validated

hotspots (Fig. 2E).

Our findings raised two important questions regarding the interaction of hotspots with their

environment. First, do hotspots function as self-contained groups of cells, interacting predominantly

within their enclosed local surroundings? Second, do hotspots initiate the spread of information, or

are they more responsive to incoming non-hotspots external signals? Following the evolution of a

transient community showed alternating interactions between cells inside and outside a hotspot (Fig.

2F). To systematically decipher the interactions between hotspots and their surrounding

environment we analyzed the spatiotemporal communication patterns of all the validated hotspots

that were pooled across the wild-type LGs (N = 8 hotspot). To quantify the interactions of hotspots

with their surrounding cells, we calculated for each hotspot its probability of engaging with cells

outside the hotspot through common transient communities (Methods). The majority of hotspots (7

out of 8) interacted with non-hotspot cells in more than half of their transient communities, this

interaction was independent of the size of a hotspot (Fig. 2G), and was dominated by communities

that involved 2-4 cells within the hotspot and 1-2 cells external to the hotspot (Fig. 2H).

Specifically, 70% of hotspot communities had at least one non-hotspot cell involved, and 76% of

these communities involved more hotspot cells than non-hotspot cells (Fig. 2H). These interactions

of a hotspot with its surrounding cells did not have a systematic direction, starting from hotspot

cells outwards or initiating externally from adjacent non-hotspot cells (Fig. S6, Methods).

Furthermore, we did not identify cells that repeatedly initiated a hotspot’s transient communities,

suggesting stochasticity in hotspot initiation. These observations established the existence of

gap-junction-mediated communication “hotspots”, where recurrent Ca2+ communities coalesce into

larger communication hubs that repeatedly spread and retrieve information throughout the blood

progenitors.
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Figure 2. Recurrent activation of communities forms hotspots that act as local information hubs.
(A) Representative time-lapse images showing the formation of hotspots over time. A hotspot is defined
by recurring transient communities (see Methods). Top panels: transient communities (marked by colored
polygons, red dots mark activated blood progenitors) in a wild-type LG. Bottom panels: the integrated
number of transient communities over time. Each white dot represents an individual blood progenitor.
Each panel corresponds to its matching top panel. Scale bar = 15 µm. (B) Single-cell Voronoi tessellation,
corresponding to the yellow region of interest shown in panels C and D, and illustrating the
bootstrapping-based in silico permutation experiment (see Methods). The color of each cell (polygon)
reflects the number of activations (i.e., calcium spikes) each cell exhibits. Six cells that participate in a
hotspot are numbered and dashed color-matched arrows indicate cell swapping. The swapping is
performed for cell pairs with similar activation, where one cell is within and the other outside the hotspot
(see Methods). (C-D) Representative field of view showing the integrated number of transient
communities each cell participated in over time (#ARCOS events) before (C) and after (D) in silico
permutation (see B). Green circles: the center location of each blood progenitor. Brighter areas indicate
more occurrences of communities. The yellow region of interest marks the hotspot that is also shown in
B. (E) Hotspot statistics. Hotspots were pooled across experiments according to the experimental
condition. Dashed line - pooled number of hotspots. Gray - pooled number of hotspots with sufficient data
for statistical analysis. Blue - number of statistically significant validated hotspots. Hotspot significance
was determined according to 100-1000 different in silico permutation experiments with a bootstrapping
significance threshold of 0.05. (F) Time-lapse evolution of a representative hotspot. The hotspot was
defined according to the integrated number of transient communities per cell across the experiment (red
polygon; see Methods). Transient communities involve cells within and outside the hotspot. GCaMP6f
labeled in green. Scale bar = 5 µm. (G) The probability of hotspot cells interacting with cells outside the
hotspot through common transient communities as a function of the hotspot's size (i.e., the number of
cells in the hotspot). The analysis included the 8 statistically verified hotspots pooled across all wild-type
LGs. (H) Histogram of the number of hotspot cells (x-axis) and non-hotspot cells (y-axis) in communities
that define the hotspots - each observation used for this histogram is defined by a community. White
diagonal ( ) indicates an equal proportion between hotspot to non-hotspot cells.𝑦 = 𝑥
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Gradual formation of communication communities and their

recurrent activation during development

In flies, hematopoiesis is subject to developmental regulation, with blood progenitors exhibiting

distinct behaviors at different larval stages (Ho et al., 2023; Krzemien et al., 2010). Specifically,

cell proliferation and differentiation show distinct patterns at different points along the

developmental timeline (Fig. 3A) (Krzemien et al., 2010). For example, the differentiation of

mature blood cells starts around the mid- to late-second instar transition and peaks around the

mid-second to mid-third instar larval stages (Ho et al., 2023; Krzemien et al., 2010; Shim et al.,

2013). The level of mature blood cell differentiation gradually declines as the LG develops and

becomes significantly attenuated upon entry into the mid-third instar stage (Fig. 3A) (Krzemien

et al., 2010; Shim et al., 2013). In contrast, cell proliferation in the blood progenitors peaks

earlier, during the first- to second-instar stages, when the progenitor repertoire rapidly expands

(Ho et al., 2023; Krzemien et al., 2010). Shortly after the onset of differentiation, the rate of cell

proliferation slows down but remains active until the mid-third instar stage (Fig. 3A) (Mondal et

al., 2011).

We previously showed that Ca2+ signaling appeared to evolve over larval development,

correlating with the differentiation activity of progenitors (Ho et al., 2021). Specifically, we

observed lower Ca2+ signaling propagation between neighboring cells and a reduced connectivity

of the Ca2+ signaling network during early larval stages (Ho et al., 2021). To understand how

Ca2+ signaling communities develop during hematopoiesis when progenitors show distinct

proliferation and differentiation patterns (Fig. 3A), we expanded our analysis to the earlier stages

of the late-second and early-third larval stages. Our analysis characterized a gradual build-up of

signaling communities, in terms of both quantity and complexity, over the course of blood

progenitor development. Specifically, both the fraction of experiments with significant local

communities (Fig. 3B) and the magnitude of MEC (Fig. 3C) increased across the three stages in

wild-type LGs. In contrast, RNAi-mediated zpg knockdown induced a decrease in both

parameters of signaling communities (Fig. 3E-F), suggesting that the emergence of signaling

communities was perturbed. Hotspots analysis showed a similar trend of gradual emergence of

recurrent Ca2+ communities along the developmental trajectory with 0/4 validated hotspots in the

late-second, 3/6 in the early-third, and 8/14 in the mid-third (Fig. 3D). In contrast, no (0)
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hotspots were validated across all developmental stages of the Zpg-depleted LGs (Fig. 3G).

Taken together, our data suggests that signaling communities and their recurrent activation

emerge during, and evolve over, the course of larval development and that gap junctions are

required for the developmental progression of these Ca2+ signaling communities in blood

progenitors. This is also consistent with our previous observation showing that Zpg depletion

increases blood cell differentiation (Ho et al., 2021), supporting a model where signaling

communities coordinate blood progenitor behavior to maintain LG homeostasis during

development.
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Figure 3. Gradual formation of communication communities during development.
(A) Lymph gland development throughout Drosophila larval stages (see Methods). (B-D) Analyses of
wild-type LGs from the late-second instar stage (N = 4), early-third instar stage (N = 5), and mid-third
instar stage (N = 12). (B) Number of spatially significant experiments. For each experimental condition,
gray indicates the number of insignificant and color indicates the number of significant LGs. Significance
was determined using Fisher's exact test. (C) MEC magnitude. Each data point corresponds to a single
LG. Significance was determined using the Kruskal-Wallis test to evaluate the differences between the
different developmental stages. (D) Hotspots statistics. Dashed line - pooled number of hotspots. Gray -
pooled number of hotspots with sufficient data for statistical analysis. Blue - number of statistically
significant validated hotspots. Hotspot significance was determined according to 100-1000 different in
silico permutation experiments with a bootstrapping significance threshold of 0.05. (E-G) Analyses of
RNAi-mediated zpg knockdown LGs from late-second instar stage (N = 3), early-third instar stage (N =
4), and mid-third instar stage (N = 8). (E) Quantification of the number of spatially significant
experiments in blood progenitors. See B. (F) Analysis of MEC magnitude. See C. (G) Number of
validated hotspots per developmental stage. See D.
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Discussion
There are numerous examples in the literature reporting synchronization and collective events in

the context of cell signaling and behavior (Gagliardi et al., 2023; Sun et al., 2012; Zamir et al.,

2022). A critical question that has remained underexplored is how does global, tissue-scale

synchronization emerge from local cell-cell communication? More specifically, what are the

intermediary steps involved in reaching the final synchronization state? In an attempt to provide

some insight into the answers to these questions, we have previously described how endothelial

monolayers synchronize Ca2+ signaling by gradually transitioning from local to global

information spread (Zamir et al., 2022). Other studies reported signaling waves propagating

across long distances in a variety of systems and in the context of diverse functions (Gagliardi et

al., 2021; Gagliardi et al., 2023; Hino et al., 2020; Aoki et al., 2017). However, these studies did

not pinpoint a specific intermediate spatial scale between single-cell and collective signaling.

Here, using Drosophila hematopoiesis as our model system, we were able to identify such an

intermediate spatial scale. Our work elaborates on our previous findings that described the

important role played by gap junctions in coordinating cellular signals in the LG (Ho et al.,

2021). We now show that an intermediate spatial scale exists, involving transient gap

junction-mediated Ca2+ signaling in the form of multicellular communities. Similar scale

collective events were previously reported in the context of Erk signaling in epithelial cells, and

Ca2+ signaling in the Madin-Darby canine kidney epithelium (Gagliardi et al., 2023) suggesting

that this could be a universal way to collectively organize the signaling activity of individual

cells in a multicellular system.

A key feature in some of these transient communities was recurrent activation events that formed

larger communication processing hubs that we call signaling hotspots. These hotspots had

several important functional characteristics: 1) Their formation required the activity of

Zpg-based gap junctions. 2) They acted as information hubs that were able to induce (i.e.,

transmit) and process (i.e., receive) collective signaling using mechanisms that operated both

within (intrinsically) and outside (extrinsically) of the hotspot. 3) They exhibited repetitive

interactions with their environment and were spatially heterogeneous. 4) There was an increased

incidence of hotspots as the LG evolved and developed consistent with a role in the emergence
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of collective cell behavior. Each of these characteristics of the hotspots played an important

functional role in shaping the signaling landscape within the LG. Overall, these findings reveal a

novel mechanism whereby local cell-cell signaling propagation, through gap junctions,

progresses into intermediate multicellular communities that integrate local information to

achieve global population-wide synchronization during fly hematopoiesis.

Our observation that hotspots self-organize as information processing hubs in the blood

progenitor population suggests that the hotspots perform a function that bears general

resemblance to that performed by pacemaker cells, at the multicellular scale. A characteristic of

pacemaker cells is their ability to coordinate the electrical or Ca2+ signaling activity of individual

cells to guide collective decisions (Sun et al., 2012; Bychkov et al., 2020; Moortgat et al., 2000).

Multicellular structures that are functionally and morphologically similar to pacemaker cells

appear across diverse tissues, including Cajal interstitial cells in the gut (Lee et al., 2017), a

sinoatrial node in the heart (Bychkov et al., 2020), and preBötC cells in the brain stem (Feldman

et al., 2015), indicating that it is a conserved module in living systems to regulate systemic

homeostasis. We note three features of blood progenitor hotspots that resemble those found in

pacemaking cells. First, as we previously proposed, blood progenitors form a small-world Ca2+

signaling network (Ho et al., 2021), where most cells are separated from each other by a small

number of cell-to-cell transmission events thanks to a small subgroup of cells with high

connectivity compared to other cells (Smedler et al., 2014). Here, using ARCOS and in silico

spatial permutation analysis, we directly demonstrated the existence of such hub-like network

structures, or hotspots, within the blood progenitor population. Second, a well-known feature of

pacemaker cells is their ability to integrate and segregate information between cells that are

either external or internal to their signaling hub (Barabasi and Oltvai, 2004; Rubinov and Sporns,

2010; Takahashi et al., 2010). Our study quantitatively illustrates that Ca2+ signaling in blood

progenitors is organized into hotspots that are able to both receive and send information. Third,

there are several functional analogies between the hotspots found in blood progenitors and

cardiac pacemaker cells found in sinoatrial nodes. These include: (A) transfer of information

across large distances and the ability to fine-tune the activities of a large group of cells (Bychkov

et al., 2020), (B) highly synchronized multicellular activity that is often tied to function (Ho et

al., 2021; Bychkov et al., 2020; Boyett et al., 2000), (C) coordinated cell behavior that is
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dependent on gap junctions (Ho et al., 2021; Boyett et al., 2000), (D) self-organization and

synchronization of local heterogeneous Ca2+ signals (Bychkov et al., 2020), and (E) intracellular

Ca2+ signals in both systems are controlled by the same molecular machinery including gap

junctions (Ho et al., 2021; Moortgat et al., 2000; Boyett et al., 2000), SERCA pumps (Ho et al.,

2021; Musa et al., 2002), and ryanodine receptors (Musa et al., 2002; Shim et al., 2013). These

observations highlight similar design principles, both conceptual and functional, that allow LG

blood progenitor hotspots and cardiac pacemaker cells to coordinate cells within a population.

Signaling hotspots highlight the spatial heterogeneity in intercellular Ca2+ information processing

in the developing LG. How such heterogeneity develops in seemingly homogenous blood

progenitors remains unknown. Heterogeneity in intercellular communication, even in the same

cell population, can originate from intrinsic cell-to-cell variation in gene expression levels or

protein modifications (Elowitz et al., 2002; Gut et al., 2018; Raj and van Oudenaarden, 2008).

Indeed, single-cell transcriptomic analysis on LGs showed that blood progenitors, which were

previously considered as a homogenous population, exhibited a large variability in their gene

expression profiles (Cho et al., 2020). The differences in their gene enrichment were used to

classify progenitors into 6 main sub-clusters that showed distinct spatial distribution and gene

expression profiles (Cho et al., 2020), suggesting that the difference in gene expression could

contribute to the heterogeneity of Ca2+ signaling. Beyond gene expression or protein

modifications, the positioning of the cells within the LG and in relation to other organs may lead

to spatial heterogeneity between hotspots, by supporting different modes of cell-cell interaction

(Hudry et al., 2019). However, we were not able to identify a stereotypic spatial pattern in the

hotspot location.

The emergence of hotspots from oscillating blood progenitors required a mechanism that

coordinates their individual activities. Although we demonstrated that the function of Zpg-based

gap junctions was indispensable in this process, the underlying mechanism remains unclear. We

can envision several possible routes for the emergence of collective Ca2+ signaling hotspots in the

blood progenitor population. According to theoretical, physics, and neural-based studies, routes

giving rise to collective behaviors can be classified into four main categories (Mehta and Gregor,

2010): (A) Pacemaker cells, in this context cells that fire rhythmic signals, entraining other cells
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to oscillate or behave in a synchronized fashion (Chen et al., 2010). (B) Phase and/or frequency

locking, where cells that naturally oscillate at different frequencies synchronize their behaviors

by adjusting their phases and/or frequencies when coupled with other cells, a representative

example being circadian neurons (Liu et al., 1997; Siapas et al., 2005; To et al., 2007; Ullner et

al., 2009). (C) Oscillator death, where mathematical approaches and synthetic genetic clocks

show that cells stop oscillating when coupled with other cells (Mehta and Gregor, 2010; Ullner et

al., 2007). Therefore, decreasing the coupling strength permits the emergence of synchronized

behavior. (D) Dynamic quorum sensing, where non-oscillatory cells start oscillating when a

signaling molecule they secrete exceeds a critical concentration threshold in their environment,

an example being yeast glycolytic oscillations (Mehta and Gregor, 2010). Comparing our data

with the above four categories, we proposed that hotspot emergence likely involves a hybrid

mechanism with both pacemaker-like and phase/frequency locking properties. First, we noticed

that some progenitors were still able to produce Ca2+ spikes even in the presence of a high

concentration of CBX (Ho et al., 2021), indicating that these cells spontaneously produce spikes

without the need of neighbor connections. As discussed in the previous section (Hotspots act as

information hubs), the progenitor hotspots show characteristics consistent with having

pacemaker-like properties. Second, for the phase/frequency locking property, we found that the

complexity and incidence rate of hotspots increased concomitant with animal development. This

showed that hotspots are able to accommodate or incorporate new cells in a developing

progenitor population. Our previous observations show that the number of gap junctions

increased and the spiking frequency of blood progenitors was modulated during LG development

(Ho et al., 2021). These two lines of evidence suggest that the newly incorporated cells, once

coupled with other cells, changed their spiking frequency over time, consistent with the

phase/frequency locking phenomenon. Overall, we suggested that the progenitor hotspots emerge

by simultaneously utilizing the pacemaker-like and phase/frequency docking mechanisms. Taken

together, our findings align with other recent studies that reported collective signaling in the

spatial scale of multiple cells (Gagliardi et al., 2023; Valon et al., 2021; Pond et al., 2022),

suggesting a universal mechanism to collectively organize the signaling activity of individual

cells in a multicellular system.
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Materials and Methods

Drosophila genetics, stocks, and maintenance

All Drosophila stocks and crosses were maintained regularly on a standard cornmeal medium

(recipe from the Bloomington Drosophila Stock Center) in vials or bottles at 25℃. The blood

progenitor-specific Gal4 driver used was Tep4-Gal4 (a kind gift from Dr. Lucas Waltzer,

Université Clermont Auvergne, France). Other lines used were: UAS-GCaMP6f

(RRID:BDSC_42747) and UAS-zpg-RNAi (RRID:BDSC_35607). Larvae were staged as

follows: eggs were first collected 6~8 hours after egg laying (AEL), late-second instar larvae

were collected 68-72 hours AEL, early-third instar larvae were collected 72-80 hours AEL, and

mid -third instar larvae (or wandering third instar larvae) were collected 96 hours AEL (Ho et al.,

2021).

Sample preparation and confocal imaging

To prepare live LG samples, larvae in desired stages were washed using Phosphate-Buffered

Saline (PBS) three times (2 minutes each), quickly rinsed with 70% ethanol, washed again with

PBS three times (2 minutes each), and dissected in the Drosophila Schneider’s medium

(pre-warmed to room temperature 10 minutes prior dissection; ThermoFisher Scientific,

21720001). The dissected LG was mounted in the glass bottom dishes (MatTek Corporation, 35

mm, P35G-0-14-C, non-coated), covered with a 1% agar pad (Agar A, Bio Basic, FB0010,

prepared in the Schneider’s medium), and stabilized with 1% agar spacers to prevent LG

compression during live recordings (Ho et al., 2023). The dish was supplied with 2 ml

Schneider’s medium over the agar pad for moisture and placed in a microscope incubator

(TOKAI HIT, Catalog number: INU-ONICS F1) that maintains the temperature at 25°C during

imaging. LG optical sections spaced by 1.5μm were imaged using a 40X oil immersion objective

(numerical aperture 1.30, UPLFLN) on an Olympus inverted confocal microscope (FV1000)

with a temporal resolution ranging from 2.3-6.7 seconds per frame (Ho et al., 2021).

To monitor real-time Ca2+ signals in blood progenitors, a genetically encoded Ca2+ sensor

GCaMP6f (peak excitation ~480 nm, peak emission ~510 nm) was expressed. Fiji (Schindelin et
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al., 2012) was used to manually annotate circular ROIs around each progenitor cell according to

the GCaMP6f activity. Raw GCaMP6f intensity values were extracted at the ROIs at individual

time points (z-profile Fiji plugin) and exported to Excel (in .csv format). The obtained GCaMP6f

signals of each cell were normalized using the formula ΔF/F= (Ft-Fmin)/(Fmax-Fmin) where Ft= raw

GCaMP6f value at each time point, Fmin andFmax= minimum and maximum GCaMP6f values of

a cell, respectively (Ho et al., 2023; Ho et al., 2021). Time-lapse recordings were processed in

Fiji and Fluoview (Olympus FV10-ASW 4.2) and the data was analyzed using Python. No

stabilization or registration on images was performed. Intensities represented mean gray values.

To block gap junctions, live dissected LGs were incubated in 50 or 100 μM CBX (Sigma,

CG4790) for 15 minutes, mounted in the Schneider’s medium with corresponding CBX

concentration, and imaged immediately (Ho et al., 2021). For the CBX-washout experiment, LGs

were incubated in 100 μM CBX for 15 minutes, rinsed in the Schneider’s medium twice (5

minutes each), mounted, and imaged immediately (Ho et al., 2021). A 1mM CBX stock was

stored at -20 °C. Imaging settings were set identically across experiments.

Transient communities detection and analysis

We applied ARCOS (Gagliardi et al., 2023) to detect and quantify the Ca2+ collective signaling

events in blood progenitors. We applied the ARCOS Python implementation (arcos4py, version

0.1.5) on the normalized time series for each inspected LG. We set neighborhoodSize to 14 μm,

which represents about two cell diameters. minClsz, the minimum initial size for a cluster to be

identified as a collective event, was set to 1. minTotalEventSize, the final size of the cluster at

the end of the event, was set to 3 cells. This way we enforced a minimum cluster size of 3 cells

while allowing asynchronous cell activations. nPrev, the maximal number of frames between

different cell activations, was configured empirically to a maximum time lag of 15 seconds

according to the temporal resolution. minDuration, the minimal time for a collective event, was

set to 1 frame, enabling the detection of short-term co-occurring activations. Binarization

parameters were set according to the default recommended values (Gagliardi et al., 2023), with

biasMet, smoothK and biasK set to “runmed”, 3 and 51, respectively. To minimize the detection

of false activations, peakThr and binThr were empirically set to 0.3 and 0.4, respectively.
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Statistically validating local properties of collective signaling events

We designed a bootstrapping-based statistical test to reject the null hypothesis that the collective

signaling events are non-local properties. This was achieved by repeating the following steps

1,000 times: (A) spatially shuffling the cells’ time series, which is equivalent to randomizing the

cells’ locations; (B) applying ARCOS to the spatially shuffled time series; (C) recording the

mean number of collective signaling events per cell (mean events per cell, MEC) across the

spatially shuffled cells. The statistical significance was calculated as the fraction of spatially

shuffled experiments where the MEC was equal to or exceeded the MEC of the observed (not

shuffled) experiment. The MEC magnitude was calculated as the mean ratio between the

experimentally observed MEC and the MEC of each of the spatially shuffled experiments, and

indicates the MEC fold change in respect to excluding the spatial organization.

Mean local cell density and mean cell activation

The mean local cell density was defined as the average number of cells within a square area of

14x14 µm2 surrounding each cell. The mean activation rate was defined as the average number

of activations per cell per minute. Both measurements were calculated according to the mean

value of all cells in each LG.

Communities’ intercellular signaling propagation speed

The intercellular signaling propagation speed of a community was defined as the mean time
difference between the activation of adjacent cells as a function of the distance between these
cells (µm/second) in the context of the transient community. This community-specific
measurement was pooled across all LGs within each experimental condition. To avoid
confounding effects due to different temporal resolutions between experiments, we excluded
experiments that had temporal resolution outside the range of 2.32-4 seconds per frame. This

range maintains a sufficient and similar amount of LGs per treatment ( = 4;𝑁
𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 𝑙𝑎𝑡𝑒 2𝑛𝑑

= 5; = 4; = 3; = 3;𝑁
𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 𝑒𝑎𝑟𝑙𝑦 3𝑟𝑑

𝑁
𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 𝑚𝑖𝑑 3𝑟𝑑

𝑁
𝑧𝑝𝑔 𝑅𝑁𝐴𝑖 𝑙𝑎𝑡𝑒 2𝑛𝑑

𝑁
𝑧𝑝𝑔 𝑅𝑁𝐴𝑖 𝑒𝑎𝑟𝑙𝑦 3𝑟𝑑

= 3; = 2; = 1, = 4).𝑁
𝑧𝑝𝑔 𝑅𝑁𝐴𝑖 𝑚𝑖𝑑 3𝑟𝑑

𝑁
𝐶𝐵𝑋 3.125

𝑁
𝐶𝐵𝑋 12.5

𝑁
𝐶𝐵𝑋 𝑤𝑎𝑠ℎ𝑜𝑢𝑡
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Hotspots analysis

We defined LGmax as the maximal number of transient communities in which a single cell

participated within a specific LG. We defined LGthreshold as the maximum between 5 and LGmax,

and marked all cells that participated in at least LGthreshold transient communities. For each

connected component (in the neighborhood graph) group of adjacent cells above this threshold

we calculated its convex hull and considered it as a hotspot candidate. To validate that a hotspot

was not a result of random effects nor physical confounding factors (see Methods: Confounders

analysis), we conducted a bootstrapping-based statistical test as follows. First, we matched at

least 50% of the hotspot cells with other non-hotspot cells from the same LG, where each of the

non-hotspot cells participated in at least the same number of transient communities as its

matching hotspot cell. Second, we swapped the Ca2+ time series of each matched pair of hotspot

and non-hotspot cells. Third, we employed ARCOS on the in silico spatially permuted LG to

detect collective signaling events. Fourth, we recorded the MEC for the permuted hotspot cells.

Fifth, we repeated these four steps for each hotspot up to 1000 times, hotspot candidates with at

least 100 different in silico spatially permuted LGs were considered for the bootstrapping-based

significance test. For each hotspot candidate, the statistical significance was determined as the

percentage of in silico permutations that yielded equal or greater MEC values compared to the

original non-permuted LG. A hotspot candidate with a p-value ≤ 0.05 was considered as a

validated hotspot.

Interactions between hotspots and their surrounding environment

We quantified the interaction between cells within hotspots and their adjacent non-hotspot cells,

and measured the temporal ordering of the cells’ activation. Hotspot community was each

transient community that included at least one hotspot cell. For each hotspot, we calculated the

ratio between the number of hotspot communities involving both hotspot and non-hotspot cells

to the total number of hotspot communities (also including hotspot-exclusive cells). This ratio

represents the probability of hotspot cells interacting, via a transient community, with

non-hotspot cells.
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The direction of interaction between hotspot and non-hotspot cells was defined as whether a

hotspot community was initiated by a hotspot or a non-hotspot cell. This analysis focused on

hotspot communities involving at least one non-hotspot cell. We defined two measurements for

directionality: (A) The fraction of hotspot communities that were initiated by hotspot cells. For

this measurement, we excluded hotspot communities that were initiated by both hotspot and

non-hotspot cells that appeared in the same time frame, because of the ambiguity to which cell

initiated the community. (B) For each hotspot transient community, we considered all cell pairs

comprising one hotspot cell and one non-hotspot cell, within a distance ≤ 14 µm from one

another. We calculated the transmission probability as the fraction of such pairs where the

hotspot cell was activated before the non-hotspot cell.

The hotspot size was defined as the number of cells participating in the hotspot. The proportion

of hotspot cells in transient communities was defined as the fraction of hotspot cells in a

community. This proportion was averaged across all hotspot communities to define the average

proportion of hotspot cells in transient communities, which was used as the expected probability

of a hotspot cell to be the initiator of a hotspot transient community, under the assumption of

random activation order of cells within a community.

Statistical analysis

Pearson correlation (scipy.stats.pearsonr) was used to measure the correlation between the Ca2+

signals of blood progenitors (see Fig. 1B-C) and the correlation between MEC rate, mean local

cell density, and mean cell activation rate (see Fig. S3, Fig. S4). Bootstrapping was applied in the

spatial shuffle analysis (e.g., Fig. 1E) and the hotspot shuffle analysis (e.g., Fig. 2C). Fisher’s

exact test (scipy.stats.fisher_exact) was used to measure the differences between different

experimental conditions (treatments) in terms of the amount of spatially significant LGs (e.g.,

Fig. 1F-G, Fig. 3B, Fig. 3E). Fisher’s exact test was chosen due to the small sample size in each

experimental condition, and due to the categorical nature of the data. Kruskal-Wallis test

(scipy.stats.kruskal) was used to measure the difference between the distributions of cell pair

Pearson correlation of Ca2+ signals (Fig. 1C, Fig. S1B), magnitude of MEC (Fig. 1H, Fig. 3C,

Fig. 3F), community-level information spread rate (Fig. 1I), and distance distribution comparison
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(Fig. S4D) across experimental conditions. Non-parametric Kruskal-Wallis test was chosen due

to the varying sample sizes across different experimental conditions and due to the unknown

underlying distribution of our data. All significance tests were carried out with an α-value of

0.05, considering * - p < 0.05, ** - p < 0.01, *** - p < 0.001, **** - p < 0.0001.
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Supplementary Information

Figure S1. Close blood progenitor pairs are more synchronized in their Ca2+ activities than distant
cell pairs.
(A) Spatial analysis of all blood progenitor pairs in their temporal Ca2+ pattern. The temporal correlation
of Ca2+ signals between cell pairs was correlated with the distance (in µm) between cell pairs. Each blue
dot represents a cell pair. = 57, = 1596, Pearson correlation between the Ca2+ correlation of𝑁

𝑐𝑒𝑙𝑙𝑠
𝑁

𝑝𝑎𝑖𝑟𝑠
cell pairs and their corresponding distance = -0.15, p-value < 0.0001. (B) Cumulative distribution of
Pearson correlation of the close (orange; N=227, µ=0.101, σ=0.181) and far (blue; N=1369, µ=0.016,
σ=0.097) blood progenitor pairs (same pairs as in A). Each value in the plot is the probability of a𝐹

𝑔
(𝑥)

pair in group having a Pearson correlation coefficient greater than . Kruskal-Wallis statistical test𝑔 𝑥
verified a significant difference between the two distributions (p-value < 0.0001).
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Figure S2. Distribution of community sizes.

Transient communities pooled across 12 wild-type LGs. Each bar is the probability of a community
involving the corresponding number of cells. Ncommunities= 288, µsize = 4.302.

Figure S3. Pearson correlation between potential confounding factors.
Each data point reflects the mean value of the corresponding measurements across all cells in an
experiment, N = 12 wild-type LGs. MEC rate is the number of MECs per minute. The mean activation
rate is the average number of activations per cell per minute. Mean local cell density is the average
number of cells within an area of 14x14 µm2 surrounding each cell. The line represents linear fit. (A)
Pearson correlation (coefficient = 0.854, p-value = 0.0004) between MEC rate and the mean local cell
density (B) Pearson correlation (coefficient = 0.929, p-value < 0.0001) between MEC rate and mean
activation rate. (C) Pearson correlation (coefficient = 0.735, p-value = 0.0065) analysis between mean
activation rate and mean local cell density.
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Figure S4. Correlation between potential confounding factors in gap junction inhibition
experiments.
Each data point reflects the mean value of the corresponding measurements across all cells in an
experiment, with wild-type LGs in blue (N=12), RNAi-mediated knockdown of zpg in orange (N=8),
3.125 µM CBX in green (N=3), 12.5 µM CBX in red (N=4), and CBX washout in purple (N=4). The blue
line represents the linear fit based on the wild-type LGs. (A) Pearson correlation (coefficient = 0.487,
p-value = 0.0055) between MEC rate and the mean local cell density. (B) Pearson correlation (coefficient
= 0.876, p-value < 0.0001) between MEC rate and mean activation rate. (C) Pearson correlation (zpg
RNAi data was excluded from the calculation of the Pearson correlation, see panel D; coefficient = 0.573,
p-value = 0.0042) between mean activation rate and mean local cell density. (D) MEC rate and mean
activation rate for wild-type (blue; N=12) and RNAi-mediated knockdown of zpg (orange; N=8) LGs.
Data as in panel B. The distance of each zpg RNAi LG from the wild-type linear fit was calculated as the
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subtraction between the observed and the corresponding linear-fit MEC rate ( ,µ
𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒

= (˗ 9. 83𝑒)−18

, , ). Kruskal-Wallis statistical test verified aσ
𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒

= 0. 01 µ
𝑅𝑁𝐴𝑖 𝑧𝑝𝑔

= ˗ 0. 046 σ
𝑅𝑁𝐴𝑖 𝑧𝑝𝑔

= 0. 025
significant difference between the distance distributions of the two experimental groups (p-value =
0.0009).

Figure S5. Spatial in silico permutations of hotspot cells reduce communication in hotspot.
(A-D) Visualization of the integrated number of transient communities each cell participated in over time
in different wild-type LGs. Green circles: the center of each blood progenitor. Color-coded legend: the
number of communities. Yellow regions of interest mark hotspots. (E-H) Hotspots (dashed lines) before
and after in silico permutation. Each hotspot corresponds to the hotspot above it in panels A-D (I-L)
Signed change in the number of transient communities within a hotspot’s (dashed line) cells with respect
to the mean number following in silico permutations. Each hotspot corresponds to the hotspots above it in
panels A-D and E-H.
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Figure S6. Interactions of hotspots with their surrounding cells did not have a predominant
direction.
Each data point reflects the probability across all transient communities in a statistically significant
validated hotspot. N = 8 hotspots pooled across wild-type LGs. The average proportion of hotspot cells in
transient communities (y-axis in B and D) was defined as the mean of the ratio between the number of
hotspot cells in a community and the total number of cells in that community. The diagonal (y = x)
indicates the situation where the average proportion of hotspot cells corresponds to their probability of
transmitting a signal, i.e., activating before non-hotspot cells in the same transient community (B), or
initiating a transient community, i.e., activated first in the transient community (D). Transmission
probability was calculated from all pairs of adjacent hotspot and non-hotspot cells in a common transient
community (see Methods). (A-B) Probability of signal transmission from hotspot cells to non-hotspot
cells as a function of hotspot size (A) and as a function of the average proportion of hotspot cells in
transient communities (B). (C-D) The probability of a hotspot cell to initiate a transient community as a
function of hotspot size (C) and as a function of the average proportion of hotspot cells in transient
communities (D).
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