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2 

Abstract 14 

The success of deep learning in identifying complex patterns exceeding human intuition comes 15 

at the cost of interpretability. Non-linear entanglement of image features makes deep learning a 16 

“black box” lacking human meaningful explanations for the models’ decision. We present 17 

DISCOVER, a generative model designed to discover the underlying visual properties driving 18 

image-based classification models. DISCOVER learns disentangled latent representations, where 19 

each latent feature encodes a unique classification-driving visual property. This design enables 20 

“human-in-the-loop” interpretation by generating disentangled exaggerated counterfactual 21 

explanations. We apply DISCOVER to interpret classification of in-vitro fertilization embryo 22 

morphology quality. We quantitatively and systematically confirm the interpretation of known 23 

embryo properties, discover properties without previous explicit measurements, and 24 

quantitatively determine and empirically verify the classification decision of specific embryo 25 

instances. We show that DISCOVER provides human-interpretable understanding of “black-26 

box” classification models, proposes hypotheses to decipher underlying biomedical mechanisms, 27 

and provides transparency for the classification of individual predictions. 28 
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Introduction 30 

With the rapid growing volume and complexity of modern biomedical visual data, we can no 31 

longer rely on human capacity to identify visual patterns in biomedical images. Deep learning 32 

models, specifically convolutional neural networks (CNNs), have shown great promise in 33 

identifying complex patterns in biomedical images. CNNs may achieve performance comparable 34 

and even superior to that of domain experts, as shown for example in diabetic retinopathy 35 

(Gulshan et al. 2016, Ting et al. 2017, Hacisoftaoglu et al. 2020, Ruamviboonsuk et al. 2022), 36 

skin cancer (Esteva et al. 2017, Fujisawa et al. 2018), cardiovascular risk factors (Poplin et al. 37 

2018), chest radiograph interpretation (Rajpurkar et al. 2018), breast cancer (Rodriguez-Ruiz et 38 

al. 2019), mesothelioma (Courtiol et al. 2019), genetic disorders (Gurovich et al. 2019), and 39 

COVID (Wang et al. 2021). While classical machine learning relies on hand-crafted features, the 40 

success of deep learning stems from data-driven nonlinear optimization of feature extraction 41 

toward a specific classification task, without relying on prior assumptions about the image data 42 

or specific measurables. However, this success comes at the cost of poor interpretability. In 43 

classical machine learning, hand-crafted features can be back-tracked to provide interpretable 44 

explanations of the model decisions (e.g., SHAP, Lundberg et al. 2017). However, CNNs’ 45 

nonlinear entanglement of image features makes deep learning a “black box” that lacks 46 

straightforward explanations. Understanding the image properties underlying the models’ 47 

prediction is especially critical in biomedical domains because the clinician/researcher must 48 

understand the clinical/phenotypic basis of the machine’s prediction in order to trust it 49 

(Belthangady et al. 2019, Andrews et al. 2022, Rajpurkar et al. 2022). Moreover, understanding 50 

the reason behind a machine’s prediction is key for deciphering the underlying biological 51 

mechanisms, which in cases of disease detection, is a critical step toward treatment. 52 

The most common visual interpretability methods for deep learning image-based classification 53 

models are attribution-based (also known as gradient-based) methods that generate heatmaps or 54 

“attention maps” that highlight the image regions contributing most to the models’ prediction 55 

(Zhou et al. 2016, Selvaraju et al. 2017, Shrikumar et al. 2017). Another, more recent approach 56 

for visual interpretability, known as “counterfactual explanations” (e.g., Lang et al. 2021), is 57 

based on the use of generative models that alter the image to affect the model’s prediction. This 58 

is done, for example, by generating counterfactual images where the classification-driven image 59 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.15.566968doi: bioRxiv preprint 

https://pubmed.ncbi.nlm.nih.gov/27898976/
https://pubmed.ncbi.nlm.nih.gov/29234807/
https://pubmed.ncbi.nlm.nih.gov/32704196/
https://pubmed.ncbi.nlm.nih.gov/35272972/
https://pubmed.ncbi.nlm.nih.gov/28117445/
https://pubmed.ncbi.nlm.nih.gov/29953582/
https://pubmed.ncbi.nlm.nih.gov/31015713/
https://pubmed.ncbi.nlm.nih.gov/31015713/
https://pubmed.ncbi.nlm.nih.gov/30457988/
https://pubmed.ncbi.nlm.nih.gov/30834436/
https://pubmed.ncbi.nlm.nih.gov/30834436/
https://pubmed.ncbi.nlm.nih.gov/31591589/
https://pubmed.ncbi.nlm.nih.gov/30617323/
https://pubmed.ncbi.nlm.nih.gov/33629156/
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://pubmed.ncbi.nlm.nih.gov/31285623/
https://pubmed.ncbi.nlm.nih.gov/35896733/
https://pubmed.ncbi.nlm.nih.gov/35058619/
https://doi.org/10.1109/CVPR.2016.319
https://doi.org/10.1109/ICCV.2017.74
https://arxiv.org/abs/1704.02685
https://arxiv.org/abs/2104.13369
https://doi.org/10.1101/2023.11.15.566968
http://creativecommons.org/licenses/by-nc/4.0/


4 

properties are exaggerated to enable identification of subtle phenotypes (Zaritsky et al. 2021). 60 

Alterations in image patterns that are associated with changes in the model’s prediction can then 61 

be interpreted by experts to establish new mechanistic hypotheses and draw biological or clinical 62 

conclusions (e.g., Zaritsky et al. 2021). Practically, however, current interpretability methods 63 

suffer from limitations that make them not sufficiently robust for systematic general-purpose 64 

visual interpretability of biomedical imaging based deep learning classification models 65 

(Rodríguez et al. 2021, Rudin et al. 2019). A major limitation toward systematic interpretability 66 

is the entanglement of multiple classification-driving image properties producing convoluted 67 

visual explanations of the object that is being interpreted. This hampers the expert's ability to 68 

interpret which semantic image properties contributed to the classifier’s decision.  69 

Here, we present DISentangled COunterfactual Visual interpretER (DISCOVER), a generalized 70 

method toward systematic visual interpretability of image-based classification models. The main 71 

innovation of DISCOVER is a disentangling module that forces each latent feature to encode 72 

exclusive image property that is distinct from the ones encoded by other latent features, and thus, 73 

leads to disentanglement of the latent representation in the context of the image space. This 74 

disentanglement allows visually intuitive traversal of the latent space one latent feature at a time 75 

under the assumption that each feature will encode independent classification-driving semantic 76 

image properties. We demonstrated that latent features can be visually interpreted, by domain 77 

experts, to specific semantic image properties. These interpreted latent features can discover and 78 

quantify classification-driving semantic properties that did not have explicit measurements, and 79 

to rank the importance of each semantic property on instance-specific model’s predictions.  80 

We applied our visual disentangled interpreter to the domain of in vitro fertilization (IVF). In 81 

IVF, egg(s) are removed from the patient’s ovaries, fertilized, and incubated in a laboratory. One 82 

or a few embryos from the cohort are then transferred to the patient’s uterus. IVF is an ideal 83 

example of a biomedical domain where visual assessment is the key to its success. This is 84 

specifically relevant to the visual assessment of embryo quality that occurs prior to embryo 85 

selection for transfer or cryopreservation (Gardner et al. 2000 , Alpha Scientists 2011). After 86 

approximately forty years of low-throughput techniques, automated live embryo imaging 87 

technique transformed IVF into a data-intensive field and led to the development of unbiased and 88 

automated methods that rely on machine learning for visual assessment of embryo quality (Raef 89 

et al. 2019, Simopoulou et al. 2018, Bormann et al. 2020, Khosravi et al. 2019 ,Chavez-Badiola 90 
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et al. 2020, Tran et al. 2019, Chen et al. 2019, Uyar et al. 2015, Silver et al. 2020). These 91 

advances are now revolutionizing the field, with recent studies demonstrating that deep learning 92 

models can exceed clinician performance in embryo assessment (Bormann et al. 2020, Fitz et al. 93 

2021). The high volume of standardized image-based data that are acquired in clinics around the 94 

globe, along with the complexity of the phenotypic information in embryo images, make IVF an 95 

attractive application to showcase visual interpretability. We demonstrate the ability of 96 

DISCOVER to decipher manually annotated embryo quality properties, to discover embryo 97 

quality properties that were not explicitly annotated, and to determine which quality properties 98 

were most dominant in the classification decision for specific embryos.  99 

  100 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 17, 2023. ; https://doi.org/10.1101/2023.11.15.566968doi: bioRxiv preprint 

http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7064494/
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc6554189/
https://doi.org/10.1142/S2661318219500051
https://doi.org/10.1177/0272989x14535984
http://arxiv.org/abs/2006.01035
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc7583085/
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8581077/
http://www.ncbi.nlm.nih.gov/pmc/articles/pmc8581077/
https://doi.org/10.1101/2023.11.15.566968
http://creativecommons.org/licenses/by-nc/4.0/


6 

Results 101 

Deep learning classification of blastocyst morphologic quality  102 

The IVF process involves retrieving a cohort of oocytes, fertilizing them with sperm, and 103 

incubating them for several days in vitro. The fertilized eggs (embryos) are typically incubated 104 

until the blastulation stage of embryonic development is reached after 5 or 6 days of 105 

development (henceforth called a blastocyst). The highest quality blastocyst(s) is then transferred 106 

into the uterus for implantation. We trained a deep neural network to predict a blastocyst binary 107 

morphologic quality (i.e., high versus low quality) using a balanced training dataset consisting of 108 

2,170 expert-annotated blastocysts images captured after 103 hours post insemination and 109 

obtained retrospectively from three clinics (Methods). An expert embryologist annotated each 110 

blastocyst image according to two of the Gardner and Schoolcraft blastocyst quality grading 111 

criteria (herein called Gardner) (Gardner et al. 1999) (Fig. 1A): (1) morphology of the inner cell 112 

mass (ICM), a compacted grouping of cells within the blastocyst that eventually form the fetus; 113 

(2) morphology of the trophectoderm (TE), a single cell layer surrounding the blastocyst 114 

periphery that eventually forms the placenta. To define binary labels, the blastocysts were 115 

defined as either ‘high’ (N = 1,085) or ‘low’ (N =1,085) quality, based on their ICM and TE 116 

annotations, according to the criteria defined in (Gardner et al. 1999 , Khosravi et al. 2019) 117 

(Methods) (Fig. 1B). We developed a preprocessing pipeline to localize blastocysts within the 118 

image (Fig. S1), followed by fine-tuning a pre-trained VGG-19 (Simonyan et al. 2014) deep 119 

convolutional neural network model by re-training it to discriminate between high- versus low-120 

quality blastocysts (Methods) (Fig. 1C). This IVF-CLF model performed well with an area under 121 

the receiver operating characteristic (ROC) curve (AUC) of 0.93 (Fig. 1D). The classification of 122 

high- versus low-quality blastocysts was previously solved by others, with comparable results 123 

(e.g., Khosravi et al. 2019). The reason for working with a high-performing model that is based 124 

on known morphologic properties is that it allows for a controlled test-bed for assessing our 125 

interpretability method. We attempted to interpret our IVF-CLF model by applying GradCAM, a 126 

classic “explainable AI'' method that generates heatmaps highlighting the image regions 127 

contributing most to a given prediction of deep neural network classifiers (Selvaraju et al. 2017). 128 

But GradCAM provided convoluted visual explanations that were unintuitive to embryologists 129 

(Fig. 1E).  130 
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 131 

Figure 1. Supervised machine learning model accurately classifies blastocysts according to their 132 
high versus low morphologic quality. (A) Blastocyst quality is determined according to two manually 133 
annotated quality criteria, the Inner Cell Mass (ICM) and the Trophectoderm (TE). The morphologic 134 
quality of the ICM is graded A-C and determined according to the size and compaction of the mass of 135 
cells that eventually form the fetus. The morphologic quality of the TE is graded A-C and determined 136 
according to the number of cells and cohesiveness of the single layer of cells at the outer edge of the 137 
blastocyst that eventually forms the placenta. (B) Left: representative blastocysts labeled as high quality 138 
according to manual embryologists’ (ICM, TE) annotations of (A, A), (A, B), or (B, A) (top row). Right: 139 
Representative blastocysts labeled as low quality according to manual embryologists’ (ICM, TE) 140 
annotations of (B, B), (C, B), or (B, C). (C) Schematic sketch of the IVF-CLF binary classifier trained to 141 
predict the quality score of a blastocyst image [0-1]. The IVF-CLF backbone is a VGG-19 architecture 142 
and training was initialized from the ImageNet pretrained weights. 977 high-quality and 977 low quality 143 
blastocysts were used for training. (D) ROC curve of the blastocysts quality IVF-CLF with a test set of 144 
108 high-quality and 108 low quality blastocysts. (E) GradCAM heatmaps obtained by aggregation of the 145 
last convolutional layer of IVF-CLF for all blastocysts examples in (B). Warmer colors correspond to 146 
more relevant regions for the classification outcome. For all panels scale bar = 12.5 𝜇m.  147 

 148 
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DISCOVER, the visual disentangled interpreter - a generative network architecture for 149 

visual interpretability of image-based deep learning classification models 150 

We developed DISCOVER, a general-purpose interpretability method designed to discover the 151 

underlying visual properties driving a classification task, and applied it to identify the visual cues 152 

driving the IVF-CLF trained to discriminate between high- and low-quality blastocyst images. 153 

DISCOVER is based on a deep learning generative framework that encodes the image data to a 154 

disentangled latent representation. This allowed for traversing over the latent space, one latent 155 

feature at a time, by forcing each latent feature to encode independent classification-driving 156 

image properties. This amplification of a specific discriminative latent feature enabled 157 

interpreting images with visual counterfactual explanations along a specific phenotypic axis in 158 

the image space. Enhanced interpretability was enabled by exaggerating classification-driving 159 

latent features (and their corresponding image properties), while maintaining the rest of the 160 

features (and their corresponding image properties) fixed. Training simultaneously optimizes six 161 

loss terms described below (Fig. 2A-B, full details in Methods). The weights for each loss term 162 

were optimized during training by assigning higher weights to loss terms that did not converge.  163 

To enable effective visual interpretability with counterfactual examples, the generative model 164 

must support reconstruction of high quality, realistic images from the latent representation space. 165 

We trained an adversarial perceptual autoencoder comprising two loss terms. The first loss term 166 

was a perceptual loss that enforced high quality image reconstruction. It was implemented by an 167 

autoencoder with a latent representation of 350-dimensions, where the reconstruction minimized 168 

the Euclidean distance between feature maps extracted from an ImageNet-based pre-trained 169 

VGG-19 network (Imagenet-CLF). This perceptual loss was previously shown to improve image 170 

embeddings (Pihlgren et al. 2020). The second loss term was an adversarial loss that enforced a 171 

continuous and probabilistic latent space. The adversarial loss optimized the latent 172 

representations such that a discriminator network fails to distinguish the latent representations 173 

derived from blastocysts images from vectors drawn from the latent space. Together, the 174 

perceptual adversarial autoencoder enabled reconstruction of realistic blastocyst images from 175 

traversals over the latent space, as validated by a trained embryologist (Fig. 2C). 176 

The third loss enforced domain-specific classification-oriented encoding. Subtle differences in 177 

visual features important for the supervised model’s decision may be lost during image 178 
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reconstruction. Thus, we minimized the discrepancy of the supervised model’s intermediate 179 

layers (i.e., perceptual loss) and the IVF-CLF prediction score between the input images and 180 

their corresponding reconstructed images. This second perceptual loss constrains the generative 181 

model to maintain image features that are important for the supervised model’s decision. 182 

Accordingly, the blastocysts images and their corresponding reconstructions exhibited similar 183 

IVF-CLF classification scores (Fig. 2C-D).  184 

The fourth and fifth loss terms enforced disentanglement of the latent representation (Fig. 2A, 185 

yellow and Fig. 2B). The goal of these loss terms was to constrain a latent representation such 186 

that each latent feature encodes a distinct visual property in the image. This disentanglement was 187 

achieved by (1) whitening (forth loss) by decorrelating the latent space, and forcing its 188 

covariance toward a unit matrix (Bardes et al. 2021) (Fig. 2B, ‘COV’ matrix, Fig. S2), and (2) 189 

counterfactual disentanglement (fifth loss) by optimizing a new network (Fig. 2B, green ‘Dsnt’ 190 

trapeze) to identify which latent feature was altered in a perturbed image. The input of the 191 

counterfactual disentanglement model consisted of two images: the unaltered reconstructed 192 

image and the reconstructed image after altering the latent feature (Fig. 2B). These two loss 193 

terms constrain each latent feature to encode image features that are distinct from other latent 194 

features and, thus, leads to disentanglement of the latent representation. This allows for simpler 195 

traversal of the latent space one feature at a time under the assumption that each feature will 196 

encode independent classification-driving image features. We also hypothesize that such feature 197 

disentanglement will push the latent representation, such that each latent feature will tend to 198 

encode a single image feature. In summary, the disentangled latent representation enables more 199 

intuitive visual interpretability where alteration of each latent feature would amplify image 200 

properties specifically assigned to that feature. This is in contrast to entangled latent 201 

representations, where each latent feature is more prone to encode uninterpretable visual image 202 

properties.  203 

The sixth, and final, loss term, enforced a classification-driving subset of latent features (Fig. 2B, 204 

cyan feature subset marked in Z). The goal of this loss term was to attain a sub-group of latent 205 

features that are highly correlated to the classification model’s prediction, while the rest of the 206 

latent features maintain high quality reconstruction. We forced 14, out of the 350 latent features, 207 

to correlate more strongly with the classification output of the input image. This was achieved by 208 

(simultaneously) training another layer (of a single neuron) to predict the IVF-CLF’s 209 
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classification score from the first 14 features in the latent representation. Accordingly, the IVF-210 

CLF’s classification scores were highly associated with the corresponding classification derived 211 

from the 14-dimensional subset (Fig. 2E). These first 14 latent features were more correlated to 212 

the IVF-CLF classification score when compared to the other features in the latent representation 213 

(Fig. 2F).  214 

All six loss terms were minimized simultaneously, ultimately providing us with a generative 215 

model designed for interpretation and discovery of blastocyst quality classification-driving 216 

clinically meaningful image properties. Specifically, a generative model enabling high-quality 217 

and realistic reconstruction (loss #1) and traversal (loss #2) of the latent space, with a domain-218 

specific classification oriented encoding (loss #3). The latent representation included a subset of 219 

14 latent features optimized toward explainability by visual disentanglement (loss #4-5) and 220 

correlation with the classifier that is being interpreted (loss #6). 221 

Ablation experiments verified that all loss terms were necessary toward high quality 222 

reconstruction (Fig. S4A), classification oriented encoding (Fig. S4B), classification-driving 223 

subset of latent features (Fig. S4C-D), and disentanglement of the latent representation (Fig. 224 

S4E).  225 
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 226 

Figure 2. DISCOVER - a generative model designed toward visual interpretability of image-based 227 
binary classification models. (A) DISCOVER’s high-level architecture. Input: pre-processed blastocyst 228 
images, IVF-CLF - a binary classifier trained to predict blastocyst quality. The DISCOVER architecture 229 
is composed of 3 modules: (1) an adversarial autoencoder for high quality reconstruction and generation 230 
of realistic images from the latent representation space (dashed blue). The pre-trained ImageNet-CLF is 231 
used for perceptual loss minimization between real and reconstructed images; (2) minimization of the 232 
deviation between the IVF-CLF scores of the input image and its corresponding reconstructed image 233 
toward classification-oriented encoding (dashed green); (3) a disentanglement module (yellow, detailed in 234 
B) which decorrelates the latent features and associates a small subset of the latent features to unique 235 
image properties correlated with the IVF-CLF. Scale bar = 12.5 𝜇m. (B) Architecture of the 236 
disentanglement module that include two loss terms toward a classification-driving subset of latent 237 
features: (1) The disentanglement loss term minimizes the error of a new model trained to identify which 238 
latent feature was altered. This model receives as input the difference image between the unaltered 239 
reconstructed image (from Z) and the reconstructed image after altering a random latent feature (green in 240 
Zp), and is optimized to predict the index of the altered latent feature (green “predicted latent feature”); 241 
(2) Constraining the generative model to maintain a specific subset of latent features that are correlated to 242 
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the frozen model’s classification score. The first 14 features in the latent representation (cyan in Z) are 243 
used as input for a new supervised model that is optimized to predict the IVF-CLF score (“predict score” 244 
below Z). Specifically, this subset of latent features is fully connected to a single neuron which is passed 245 
through a sigmoid activation, and is minimized by ‘binary cross entropy’ loss. An additional regularizer 246 
on the latent vector Z further forces decorrelation by whitening the covariance matrix. (C) Representative 247 
blastocysts images (‘Real’ , top) and their corresponding reconstructions (‘Recon’ bottom) along with the 248 
corresponding IVF-CLF classification scores above each image. Scale bar = 12.5 𝜇m. (D-E) Scatter plot 249 
of the IVF-CLF classification scores of the blastocysts’ images (x-axis) and their matched reconstructed 250 
images (D) or matched scores derived from the classification-driving subset of latent features (E) (y-axis). 251 
N = 1085 high quality blastocysts (blue), N = 1084 low quality blastocysts (blue). Mean absolute error 252 
between real images scores and reconstructed images scores (D) or subset of latent features scores (E) is 253 
0.04 and 0.06, respectively. (F) Pearson correlation coefficient (y-axis) between each latent feature (x-254 
axis) and the IVF-CLF’s classification score. Panels D-F use N = 2169 blastocysts that were not used to 255 
train the model. Mean (std) of the absolute correlation of the 14 classification-driving subset of latent 256 
features were 0.257 (0.111) and 0.049 (0.0038) for the rest of the latent features. Mann–Whitney-U test p-257 
value < 0.003.  258 

 259 

Visual interpretation of classification-driving latent features: blastocyst size and 260 

trophectoderm 261 

To visually interpret which blastocyst morphologic quality properties had the greatest impact on 262 

the classification, we ranked the subset of classification-driving latent features according to their 263 

correlations with the IVF-CLF’s classification score. For each of the top ranked latent features 264 

and for each given blastocyst, we generated a series of counterfactual explanations. By 265 

decreasing and increasing each current latent feature by 3 standard deviations, while fixing all 266 

other features, the decoder could generate a series of ‘‘in silico’’ blastocysts images gradually 267 

morphing toward exaggerated better or worse quality along the visual phenotypic axis defined by 268 

that feature, in accordance with the IVF-CLF’s classification score (Fig. 3A, Fig. S5A-B). We 269 

visualized the counterfactual visual alteration for each of the top five ranked features of the same 270 

reconstructed blastocyst image. The visualization of the counterfactual alteration was computed 271 

using the Structural Similarity index (SSIM) (Renieblas et al. 2017), where each pixel was 272 

assigned with the SSIM dissimilarity of its corresponding patch between two reconstructed 273 

images (Methods). Visualizing each feature in respect to reconstructed images after major 274 

alterations (± 3 standard deviations), for the same blastocyst, revealed that each feature showed a 275 

distinct visual counterfactual alteration pattern (Fig. 3B). These results suggested that the 276 

classification-driving latent features were visually disentangled by the morphologic properties 277 

that they encode in the reconstructed blastocyst images.  278 
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We next used these visual counterfactual alterations to interpret the two top classification 279 

features. These were features #0 and #10 with a Pearson correlation coefficient of 0.69 and -0.65 280 

to the IVF-CLF, respectively. Since the variance of all latent features equals one due to the latent 281 

generative-adversarial loss (Methods), we morphed the latent features within the range [-3, +3], 282 

and visualized the counterfactual alterations between the two extreme reconstructed images. We 283 

observed that the counterfactual visual alterations of feature #0 were concentrated around the 284 

blastocyst bulk, indicating a monotonically altered blastocyst size, leading to a corresponding 285 

change in the classification score (Fig. 3C - top, Fig. S5B-C). While the blastocyst size was not 286 

explicitly annotated in our data, it was previously linked to clinical pregnancy (Sciorio et al. 287 

2021). The blastocyst size is also a property highly associated with the blastocyst expansion 288 

status (Lagalla et al. 2015), i.e., the volume and degree of expansion of the blastocyst cavity, 289 

which is the third quality grading criteria in the Gardner assessment (Gardner et al. 2000). For 290 

feature #10 we observed visual counterfactual alterations concentrating in the blastocyst 291 

periphery, which corresponds to the trophectoderm. The counterfactual trophectoderm visual 292 

quality was monotonically altered in concurrence with the latent feature value, leading to a 293 

corresponding change in the classification score (Fig. 3C - bottom, Fig. S5B-C). These visual 294 

explanations for latent features #0 and #10 were robust to image flipping and brightness changes 295 

(Fig. S5D). To further corroborate the encoding to blastocyst size and TE quality, we randomly 296 

selected a sequence of nine blastocysts in predefined monotonically increasing intervals of latent 297 

features #0 and #10. Visual observation by embryologists suggested that the changes were 298 

mostly attributed to blastocyst size and TE quality, and respectively, the IVF-CLF scores 299 

gradually increased in relation to the change in the corresponding latent features (Fig. 3D, 300 

Methods). These disentangled visual explanations of size and TE could not be attained with 301 

GradCAM (Fig. 3E). These results established the potential for DISCOVER to generate 302 

representations in which each latent feature encodes a visually interpretable classification-driving 303 

image property.  304 
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 305 

Figure 3. Visual interpretability by DISCOVER identifies blastocysts’ size and TE quality as 306 
classification-driving image properties encoded by the top two features in the latent representation. 307 
(A) Approach: Visual interpretability via counterfactual explanation with DISCOVER. From left to right. 308 
A blastocyst image is encoded to its corresponding latent representation. A latent feature is gradually 309 
altered while fixing all other features in the latent representation. The altered latent representations are 310 
decoded to their corresponding reconstructed blastocysts images. The reconstructed blastocysts sequence 311 
can be validated according to a gradual change in their corresponding classifier score and interpreted 312 
according to visualization of their counterfactual visual alteration. (B) Counterfactual visual alteration of 313 
the same blastocyst according to the alteration (± 3 standard deviations) of the five latent features most 314 
correlated to the IVF-CLF, left-to-right in descending order (Pearson correlation coefficient): #0 (0.69), 315 
#10 (-0.65), #11 (0.44), #12 (0.4), #1 (0.36). Top row: reconstructed altered images with increased 316 
classification score. Middle row: reconstructed altered images with reduced classification scores. Bottom 317 
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row: counterfactual visual alteration between the corresponding top and middle rows. Color map indicates 318 
the local change measured as 1-SSIM, and is also used in panels C and E. (C) Gradual traversal of the two 319 
latent features #0 and #10 that were the most correlated to the classifier score. Traversal was performed in 320 
the range of -3 and 3 standard deviations around the original encoded value. Top: reconstructed images. 321 
Bottom: counterfactual visual alteration. Red - latent feature values, blue - classification scores. Yellow 322 
bounding box - reconstruction of the unaltered image. (D) Panel of nine randomly selected sequences of 323 
blastocysts in predefined monotonically increasing intervals of latent feature #0 (top) and #10 (bottom). 324 
Red - latent feature value, blue - classification score. (E) Comparison of DISCOVER interpretability to 325 
GRADCAM. Five examples showing (from left to right): the original blastocyst, visual counterfactual 326 
alteration of latent feature #0 and #10, and GradCAM heatmap obtained by aggregation of the last 327 
convolutional layer. For all panels scale bar = 12.5 𝜇m.  328 

 329 

Quantitative and empirical expert validation of interpreted classification-driving latent 330 

features encoding the blastocyst size and the trophectoderm  331 

After visually interpreting the classification-driving latent features #0 and #10 as blastocyst size 332 

and trophectoderm, correspondingly, we aimed at quantitatively and systematically validating 333 

these interpretations. Correlation between the latent features showed that features #0 and #10 334 

were weakly correlated (Pearson correlation coefficient = -0.35, ranked 1 out of 91 pairwise 335 

feature correlation, see red dashed square in Fig. S2). Moreover, it is known that the blastocyst 336 

size and TE quality are associated with one another and with the overall blastocyst quality 337 

(Lagalla et al. 2015). To overcome the challenge of quantitatively decoupling the interpretation 338 

of these associated latent features to their corresponding associated morphologic properties, we 339 

matched pairs of blastocysts such that one morphological property (size/TE) was similar among 340 

the blastocysts and the other property was different. Specifically, to quantify the association 341 

between latent feature #0 and blastocyst size, we matched pairs of blastocysts with the same 342 

expert embryologist-annotated TE grades (both grade ‘A’ or both ‘B’), and with large differences 343 

in their sizes, as calculated from the segmentation masks. Such matching enabled direct 344 

comparison of size by reducing the confounding effect introduced by the correlated TE. To 345 

assess the association between latent feature #0 and blastocyst size, we calculated the distribution 346 

of signed differences in feature #0 between the larger and the smaller blastocysts in the matched 347 

pairs. Most of the larger blastocysts in the matched pairs had higher values in feature #0 as 348 

observed by a distribution shifted toward higher positive values (Fig. 4B, blue distribution), 349 

indicating that larger blastocysts (with the same TE annotations) were associated with higher 350 

values in latent feature #0. As a control, we calculated the distribution of signed differences of 351 
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latent feature #10 in the matched pairs. Here, we flipped the order of subtraction because feature 352 

#10 was negatively correlated with the IVF-CLF scores. This distribution was mostly centered 353 

around 0 indicating that latent feature #10 was only marginally altered for larger blastocysts with 354 

matched TE annotations (Fig. 4B, red distribution). This direct comparison between distributions 355 

was legitimate because the latent features were normalized and indicated that latent feature #0 356 

was more associated with the blastocyst size. To further validate that blastocyst size was 357 

specifically controlled by feature #0, we repeated the process of calculating the distributions of 358 

the matched blastocysts pairs' signed differences for each of the 14 classification-driving subsets 359 

of latent features (Methods). The subtraction order was according to the correlation sign of each 360 

latent feature with the IVF-CLF scores (Fig. 2F). The median of the differences between larger 361 

versus smaller blastocysts pairs with matched TE annotations was highest for feature #0, thereby 362 

providing more evidence that this feature specifically encodes the blastocyst size (Fig. 4C).  363 

We repeated the same analysis to quantitatively link latent feature #10 to the TE quality. We 364 

matched pairs of blastocysts with similarly computed sizes and differently annotated TE grades 365 

(‘A’ with ‘B’ or vice versa) and calculated the distribution of signed differences in feature #10 366 

between the blastocysts with lower and higher TE grades (Fig. 4E). Blastocysts with higher TE 367 

qualities (and similar sizes) were associated with positive difference values in latent feature #10 368 

(Fig. 4E, red). Using latent feature #0 as a control, showed positive difference values to a lesser 369 

extent (Fig. 4E, red versus blue). The milder effect in feature #10 in respect to #0 could be 370 

caused because of imperfect segmentation of the blastocyst and/or because the imperfect 371 

disentanglement of feature #0, in terms of its phenotypic uncoupling - i.e., latent feature #0 may 372 

contain some information specifically attributed to the TE in addition to size (see Discussion). 373 

Still, latent feature #10 encoded the TE quality better than any other of the classification-driving 374 

subset of latent features (Fig. 4F).  375 

As a final validation, we decided to empirically assess whether a trained embryologist can 376 

specifically associate the deviation in a latent feature with its corresponding interpreted 377 

morphologic property. We matched pairs of blastocysts according to latent features #0 and #10. 378 

This time, we did not use the annotated TE and computed size; rather, we aimed for expert 379 

inference of these morphologic properties from the latent features’ values. Matched blastocyst 380 

pairs had either similar values for latent feature #0 and dissimilar values for latent feature #10 or 381 

vice versa. A trained embryologist was provided with images of each matched pair and asked to 382 
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determine whether blastocysts were different in size or in TE quality, while knowing that one of 383 

these parameters was fixed (i.e., highly similar). The embryologist was able to identify the 384 

different latent features according to the corresponding interpreted morphological property in 385 

65/75 (86%) of pairs (Fig. S3). When asked to determine for which blastocyst the TE was better 386 

in pairs that had similar values of feature #0 and dissimilar values of feature #10, the 387 

embryologist successfully identified 33/39 (85%) of blastocysts with “better” feature #10. When 388 

asked to determine for which blastocyst the size was larger in pairs that had similar values of 389 

feature #10 and dissimilar values of feature #0, the embryologist successfully identified 31/36 390 

(86%) of blastocysts with “better” feature #0. Altogether, our results established that 391 

DISCOVER visually disentangled the latent representation, such that latent feature #0 392 

specifically visually encodes the blastocyst’s size and latent feature #10 specifically visually 393 

encodes the trophectoderm’s quality.  394 

 395 
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Figure 4. Statistical validation that the blastocysts’ size and TE quality are encoded by the top two 396 
features in the latent representation. (A) 2,134 matched pairs of blastocysts with similar TE 397 
annotations and different sizes. The subtractions of each latent feature value for each blastocyst and its 398 
corresponding paired blastocyst were pooled for each latent feature. The order of subtraction is 399 
determined according to the blastocysts’ size and sign of the correlation between the latent feature and the 400 
IVF-CLF scores (Fig. 2F). (B) Distributions of signed differences in latent features #0 (blue) and #10 401 
(red) between matched pairs of blastocysts with similar TE and different size. Median values = 1.64 and 402 
0.23 respectively (vertical lines). (C) Median values of the distributions of signed differences for the 14 403 
classification-driving subsets of latent features. The blue and red vertical line represent the median of 404 
latent features #0 and #10 respectively. (D-F) Analysis of 808,326 matched pairs of blastocysts with 405 
similar size and different TE, corresponding to panels A-C. (E) Median values = 0.8 (latent feature #0) 406 
and 0.96 (latent feature #10). (F) Note smaller dynamic range in respect to C. 407 

 408 

Discovery and interpretation of the blastocoel density as a classification-driving property  409 

Our previous results established that DISCOVER can identify latent features that encode two 410 

hallmark embryo morphologic properties, according to the Gardner blastocyst assessment 411 

system: blastocyst size and TE quality. Both of these properties are routinely assessed by 412 

embryologists to determine blastocyst quality prior to implantation. Next, we asked whether we 413 

could use DISCOVER to identify latent features that encode non-obvious morphologic 414 

properties in the blastocyst, i.e., ones that were not used during manual blastocyst quality 415 

annotation? To answer this question, we turned our attention to latent feature #11, the third top 416 

classification feature (Fig. 3B) with a Pearson correlation coefficient of 0.44 in relation to the 417 

IVF-CLF score (Fig. 2F). Latent feature #11 also appeared in Fig. 4C and Fig. 4F as one of the 418 

top 3 features most correlated with blastocyst size and TE quality, which further indicates that it 419 

encodes discriminative information about the blastocyst’s quality. The visual counterfactual 420 

alteration of latent feature #11 in Fig. 3B was identified by three embryologists / IVF experts as a 421 

potentially known morphologic feature of the embryo termed the blastocoel, a fluid-filled cavity 422 

inside the blastocyst (Shahbazi et al. 2020) (Fig. 5A). The presence and degree of blastocoel 423 

expansion, i.e., the increase in blastocoel volume is associated with implantation success and live 424 

birth (Du et al. 2016). Visual counterfactual alterations were interpreted by expert embryologists 425 

as having denser and more granular blastocoelic regions, suggesting that this change in the 426 

blastocoel appearance is the classification-driving morphologic property encoded by latent 427 

feature #11 (Fig. 5B). This visualization suggests that there are additional morphologic 428 

parameters of the blastocoel beyond its volume expansion that may be associated with overall 429 

embryo quality. A sequence of nine blastocysts that were randomly selected in predefined 430 
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monotonically increasing intervals of latent features #11 further verified the encoding to the 431 

blastocoel (Fig. 5C). This interpretation of a blastocyst morphologic property that was not 432 

explicitly used to annotate blastocyst quality highlights the potential for DISCOVER to define a 433 

quantitative measure for morphologic properties that do not have explicit measurements and 434 

even identify novel visual classification-driving properties that were not known a priori.435 

 436 

Figure 5. Blastocoel discovered property (A) The blastocoel is a fluid-filled cavity forming the blastula 437 
marked in gray (illustration, top) and blue (blastocyst image, bottom). (B) Counterfactual visual alteration 438 
of five blastocysts obtained by altering latent feature #11 by ± 3 standard deviations. Top row: 439 
reconstructed altered images with increased classification scores. Middle row: reconstructed altered 440 
images with reduced classification scores. Bottom row: counterfactual visual alteration between the 441 
corresponding top and middle rows. Color map indicates the local change measured as 1-SSIM. (C) Panel 442 
of nine randomly selected sequences of blastocysts in predefined monotonically increasing intervals of 443 
latent feature #11. Red - latent feature value, blue - classification score. For all panels scale bar = 12.5 444 
𝜇m. 445 

 446 

 447 

 448 
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Determining the cause of classification of a specific blastocyst 449 

Our results indicate that DISCOVER can reverse engineer the inner working of binary 450 

classification models by identifying classification-driving morphological properties. However, 451 

these results do not answer the question: what morphological properties drove the classification 452 

of a specific blastocyst? To answer this question, we took advantage of DISCOVER’s 453 

disentangled latent representation, i.e., learning representations where each latent feature is 454 

mapped to a distinct visual property in the image. This enabled us to refer to the latent 455 

representation as an (interpreted) tabular feature vector, on which we could apply SHapley 456 

Additive exPlanations (SHAP), a method for interpreting tabular-based models' predictions 457 

(Lundberg et al. 2017). For a given prediction, SHAP calculates the contribution of each feature 458 

toward the prediction. We applied SHAP to the classification-driving subset of latent features, in 459 

the context of the prediction by the single layer perceptron model (see “predict score” in Fig. 2B) 460 

that was optimized to predict the IVF-CLF score in loss #6. The weight (“Shapely value”) 461 

attributed to each latent feature, along with the mapping from individual latent features to 462 

interpreted semantic properties, enables to identify and rank the semantic properties most 463 

influencing the classification of a specific instance (Fig. 6A). Calculating the mean SHAP values 464 

for all features across the entire dataset showed similar ranking to the correlation-based analysis 465 

with latent features #0, #10 being the two highest ranked features, and agreement in 4 of the top 466 

5 latent features (Fig. S6). To evaluate why a specific blastocyst was predicted as high/low 467 

quality by the IVF-CLF, we visualized blastocysts according to their IVF-CLF predictions and 468 

their SHAP explanations. These visualizations were observed and described by an expert 469 

embryologist. Blastocysts with strong positive/strong negative SHAP values for feature #0 470 

exhibited corresponding large/small sizes (Fig. 6B left), while blastocysts with strong 471 

positive/strong negative SHAP values for feature #10 exhibited corresponding high/low TE 472 

grades (Fig. 6B middle). Blastocysts with dominant positive/negative SHAP values for features 473 

#0 and #10 exhibited appropriately corresponding size and TE morphologies (Fig. 6B right). 474 

Blastocysts with strong positive SHAP values for feature #11 were confirmed to have high 475 

quality blastocoels, and were described by an expert embryologist as having high density cell 476 

regions and associated stretched zona-pellucida membranes (Fig. 6C left and middle). 477 

Blastocysts with strong negative SHAP values for feature #11 were confirmed to have low 478 

quality blastocoels (Fig. 6C right). These results indicated that SHAP can be used to weigh and 479 
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rank the latent features of a specific blastocyst according to their predictive contribution, and that 480 

this ranking can be translated to the specific disentangled and interpreted morphological 481 

properties that drive the prediction of a specific blastocyst.  482 

 483 

 484 

Figure 6. Explaining the IVF-CLF decision for a specific blastocyst by applying SHAP to the 485 
classification-driving subset of latent features. (A) DISCOVER's classification-driving subset of latent 486 
features (loss #6) uses the latent representations (‘Z’) as an input to a single neuron which was trained to 487 
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predict the IVF-CLF classification score. SHapley Additive exPlanations (SHAP) were applied to 488 
interpret which were the most important latent features (according to their “Shapley values”) for the 489 
prediction of this single layer perceptron given a specific instance. The interpretation of latent features to 490 
semantic properties enables instance interpretability. (B-C) SHAP values for specific blastocysts. (B) 491 
Blastocysts with dominant SHAP values for latent feature #0 (encoding size), and/or #10 (encoding TE). 492 
Top/bottom rows present IVF-CLF predicted high/low quality blastocysts correspondingly, exhibiting 493 
different explanations according to their SHAP values. Blastocysts with high SHAP values for latent 494 
feature #0 (left), high SHAP values for latent feature #10 (middle), and high SHAP values for both latent 495 
features #0 and #10 (right). (C) Blastocysts with dominant SHAP values for latent feature #11 (encoding 496 
the blastocoel). Shown are three blastocysts, two with high (left, middle) and one with low (right) SHAP 497 
values for latent feature #11 (our dataset had six blastocysts with the most dominant SHAP values in 498 
latent feature #11). Scale bar = 12.5 𝜇m for all panels. 499 

 500 

Generalizing DISCOVER to interpretation of natural images: visual interpretation of 501 

classification-driving features distinguishing between male and female facial images 502 

We designed DISCOVER as a generalized method for visual interpretability of image-based 503 

classification models. To showcase this generalization we turned to the domain of natural images 504 

and asked whether DISCOVER can interpret the visual traits semantically distinguishing 505 

between human male and female facial images. We trained a face classifier GENDER-CLF by 506 

fine-tuning a pre-trained VGG-19 network to discriminate between male and female facial 507 

images using the celebA dataset (Liu et al. 2014) (Fig. S7A, Methods). We trained DISCOVER 508 

using the trained face classifier GENDER-CLF (identical to IVF-CLF, Methods) and we 509 

interpreted the top three ranked latent features, namely #2, #4, and #3, with Pearson correlation 510 

coefficient of 0.68, 0.49, and 0.42, respectively (Fig. S7B). Visualization of the counterfactual 511 

alteration revealed that feature #2 encoded the cheeks and jawline (smaller face for females), 512 

feature #4 the eyebrows and hair (thinner hair for females), and feature #3 the eyes (darker for 513 

females) (Fig. S7C, Methods). These traits were consistent with previous studies that highlighted 514 

cheeks, eyes and eyebrows as discriminative facial characteristics (Bannister et al. 2022, 515 

https://arxiv.org/abs/1805.00371). These results indicate that DISCOVER is a generalized 516 

interpretability method.  517 

  518 
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Discussion 519 

DISCOVER is a generic framework designed toward visual interpretability of image-based 520 

classification models  521 

Convolutional deep neural networks success at complex pattern recognition in images is 522 

attributed to non-linear simultaneous optimization of feature extraction and model training. 523 

However, this success comes with cost. The non-linear entanglement of image features makes it 524 

difficult to interpret which semantic image properties were most important for the models’ 525 

decision. DISCOVER is a generative model that optimizes latent representations geared toward 526 

interpretability of the inner decision making of a given classification model. DISCOVER 527 

representations are optimized toward classification-driven disentanglement of the latent 528 

representation, where a subset of latent features encapsulates the discriminative information of 529 

the classification model, and where each of these latent features encodes a distinct visual 530 

property in the image. Moreover, DISCOVER enables realistic reconstruction and traversal of 531 

the latent space, without losing visual information important to the classification model. 532 

Together, these design choices of DISCOVER enable expert-in-the-loop interpretation of the 533 

classification model by generating counterfactual images where each disentangled classification-534 

driving image property is specifically exaggerated. This is achieved by shifting the latent 535 

representations and their corresponding image reconstructions, one latent feature at a time, while 536 

leaving the rest of the latent representation fixed. This counterfactual traversal along the latent 537 

space provides critical insight regarding which semantic image properties are most important for 538 

the classification model’s decision process, including discovery of new potential classification-539 

driving semantic properties that were not known a priori. Once latent features are visually 540 

interpreted to specific semantic image properties, standard tabular-based explainable AI methods 541 

(e.g., SHAP), can be applied to weight and rank the semantic properties most influencing the 542 

classification of a specific instance. Altogether, our general framework proposes a new two-step 543 

interpretability approach. First, domain experts interpret the specific classification-driving 544 

semantic image properties encapsulated in DISCOVER’s latent representation, revealing the 545 

inner workings of a classification model. Second, using this mapping, from a latent feature to a 546 

semantic property, to explain the classification decision of specific instances. Demonstrating 547 
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applicability to one biomedical (IVF) and another general computer vision (faces) datasets 548 

suggest that DISCOVER is a generalized interpretability method.  549 

 550 

DISCOVER interpretation of in vitro fertilization blastocysts quality classification 551 

Our main demonstration of the applicability of DISCOVER was in the challenging domain of 552 

biomedical imaging, where providing insight explaining the “black box” prediction can propose 553 

new hypotheses to decipher the underlying biomedical mechanisms and/or assist in clinical 554 

decisions. Specifically, we interpreted a classification model optimized to predict human 555 

blastocysts morphologic quality in the context of IVF. First, we visually interpreted the top two 556 

classification-driving latent features that encode two well established blastocyst quality grading 557 

parameters: blastocyst size, as a proxy of development stage and degree of expansion, and 558 

trophectoderm quality. Second, we quantitatively and systematically validated the specific 559 

interpretation of these latent features as encoding the size and the trophectoderm, overcoming the 560 

inherent association between these two morphological properties. Third, we discovered a latent 561 

feature encoding the blastocoel density, which was a classification-driving morphological 562 

property that was not explicitly annotated. Importantly, there were no previous measurements to 563 

quantify blastocoel density, highlighting the potential of DISCOVER to discover new 564 

classification-driving semantic image properties and quantify these properties even without 565 

previous explicit measurements, through the corresponding latent feature values. Finally, we 566 

computationally determined and empirically verified which interpreted morphological properties 567 

were most important toward a classification decision of specific blastocyst instances. Our 568 

analyses demonstrate that DISCOVER can provide human-interpretable understanding of a 569 

“black-box” classification model and for the classification of individual predictions.  570 

DISCOVER can have direct clinical relevance in the domain of IVF by providing transparency 571 

and trust in the upcoming era of “black-box” AI-based blastocyst selection (Nagaya et al. 2022, 572 

Diakiw et al. 2022, Wang et al. 2021, Sawada et al. 2021). Moreover, in situations where more 573 

than a single blastocyst is selected for transfer, the embryologist might prefer to select 574 

blastocysts with differing morphologic properties that contribute to its high-quality, under the 575 

assumption that different “mechanisms” may complement and thus increase implantation 576 

potential (and perhaps also decrease the risk of multiple pregnancy). DISCOVER was designed 577 
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as a general-purpose visual interpretability of image-based classification models, and thus, can 578 

enable computational-driven biological and clinical discovery in other domains beyond IVF 579 

(Gulshan et al. 2016, Ting et al. 2017, Hacisoftaoglu et al. 2020, Ruamviboonsuk et al. 2022, 580 

Esteva et al. 2017, Fujisawa et al. 2018, Poplin et al. 2018, Rajpurkar et al. 2018, Rodriguez-581 

Ruiz et al. 2019, Courtiol et al. 2019, Gurovich et al. 2019, Wang et al. 2021). Capitalizing on 582 

the AI’s unprecedented ability to automatically identify hidden semantic image patterns that are 583 

buried in complex biomedical images, along with DISCOVER’s counterfactual-based visual-584 

guidance, there is significant potential to open the door to the generation of new biological 585 

mechanistic insight and testable hypotheses by reverse engineering machine predictions. 586 

 587 

DISCOVER was designed to overcome limitations of alternative image-based 588 

interpretability methods, especially toward interpretability of biomedical images  589 

Visual interpretability methods for deep learning image-based classification models can be 590 

categorized under two broad strategies, attribution based and counterfactual based. Attribution 591 

based methods compute saliency maps, indicating how much each pixel contributed to the 592 

prediction (Ribeiro et al. 2016, Zhou et al. 2019, Selvaraju et al. 2017, Chattopadhyay et al. 593 

2017, Ramaswamy et al. 2020, Ali et al. 2021). This is achieved by computing the attention of 594 

inner layers of the model by aggregating their activations, or gradients, for each pixel (Bach et al. 595 

2015, Achtibat et al. 2023, Gur et al. 2021). Accordingly, saliency maps visualize localized 596 

regions particularly important for the classification. Such approaches are not suitable when the 597 

classification-driving semantic properties are not necessarily localized (i.e., “global” attributes, 598 

such as color, brightness, orientation or size), which is common in biomedical images. Moreover, 599 

interpretability of saliency maps is less informative because they aggregate all of the 600 

classification driving image properties to a single heatmap. Counterfactual explanation methods 601 

can be subcategorized to those that incorporate latent space disentanglement (such as 602 

DISCOVER) and those that do not. Counterfactual explanation methods without 603 

disentanglement (Samangouei et al. 2018, Eckstein et al. 2021, Narayanaswamy et al. 2020, 604 

Nemirovsky et al. 2020, Shih et al. 2020, Liu et al. 2019, Joshi et al. 2018), can concurrently 605 

alter multiple image properties, thus generating less intuitive counterfactual explanations. 606 

Counterfactual explanation methods that incorporate disentanglement can be further partitioned 607 
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to methods that rely on annotated side information of image properties, for example face images 608 

with annotated properties such as hair color, mustache, or skin color (He et al. 2019, Gabbay et 609 

al. 2021, Li et al. 2020), and to unconditioned methods that do not use any further data 610 

annotations beyond the binary classification labels for training the classification model (Lang et 611 

al. 2021, Higgins et al. 2021, Rodríguez et al. 2021). DISCOVER benefits from the advantages 612 

of both approaches of counterfactual explanations and attribution based methods. Each latent 613 

feature is mapped to disentangled classification-driving semantic image properties that can be 614 

more intuitively understood by a human observer. DISCOVER does not rely on side annotations, 615 

enabling it to discover and quantify unknown subtle semantic image properties which 616 

discriminate one class from the other.  617 

Several of DISCOVER’s design choices were proposed by other recent interpretability methods. 618 

Several studies included a generator architecture, called “StyleGAN”, that was reported to 619 

generate representations that are usually more disentangled than other generative architectures 620 

(Wu et al. 2021, Härkönen et al. 2020, Oliva et al. 2020, Lang et al. 2021). Specifically, StylEx 621 

uses similar ideas to ours in optimizing latent representations toward high quality counterfactual 622 

explanations, along with classification-oriented encoding (Lang et al. 2021). In addition, StylEx 623 

instance interpretation relies directly on the latent features values which may suffer from the 624 

inherent non-linear associations between latent features and the classifier score. These non-linear 625 

associations could hamper latent feature ranking according to their importance toward a specific 626 

instance classification prediction. Moreover, all the latent features in StylEx representations are 627 

optimized toward all of the model goals, without “specialized” features geared toward specific 628 

interpretability goals. In a different study, interpretable directions in the latent space, of a 629 

pretrained Generative adversarial network (GAN) generator, were attained by training a new 630 

neural network to predict which latent feature was altered to produce a counterfactual 631 

explanation in respect to an observed unaltered image (Voynov et al. 2020). DISCOVER’s 632 

architecture integrates and extends these ideas. Specifically, our design contributions are (1) 633 

disentanglement is explicitly enforced in the latent-to-image space via a new design (loss #5), (2) 634 

a focused subset of the latent features is specifically enforced toward classification-driven visual 635 

disentanglement (loss #6), (3) direct weighting and ranking of the latent features according to 636 

their instance-specific predictive contribution, and interpretation according to the discovered 637 

semantic properties that were attributed to each latent feature. Altogether, as we empirically 638 
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demonstrated in the challenging domain of IVF, these design choices make DISCOVER a 639 

designated general-purpose interpretability “discovery machine” especially geared toward 640 

quantitative interpretation of known and new classification-driving semantic image properties.  641 

Interpretability of image-based classification models is absolutely necessary in biomedical 642 

domains where mechanistic understanding and transparency are crucial. Established attribution-643 

based (Barnett et al. 2021, Kraus et al. 2017, Graziani et al. 2018, Wu et al. 2018, Singh et al. 644 

2020, Zhang et al. 2021) or counterfactual-explanation based (Singla et al. 2023, Thiagarajan et 645 

al. 2022, Mertes et al. 2022, Narayanaswamy et al. 2020, Soelistyo et al. 2022, Zaritsky et al. 646 

2021, Lamiable et al. 2023, Kraus et al. 2017) methods were applied, out-of the box or after 647 

some adaptations, to interpret a variety of biomedical image-based classification tasks. 648 

DISCOVER’s classification-driven and disentanglement representations overcome the inherent 649 

limitations in these methods and enabled us to quantitatively confirm non-trivial interpretations, 650 

rather than relying on qualitative explanations of representative images, and to systematically 651 

perform quantitative instance-specific interpretations.  652 

 653 

Limitations  654 

Although DISCOVER provides a powerful way to uncover the semantic image properties 655 

contributing to “black box” classification models’ prediction, it still suffers from several 656 

limitations. First, the DISCOVER latent representation is optimized such that each latent feature 657 

encodes independent classification-driving semantic image properties. However, this design does 658 

not prevent one latent feature to be mapped to multiple independent semantic image properties. 659 

In other words, one latent feature may encode entanglement of multiple semantic image 660 

properties and still be disentangled in terms of the latent representation. We did not observe 661 

examples of 1 (latent feature) - to - many (semantic image properties) in the datasets we 662 

explored. Second, DISCOVER may miss semantic image properties that are associated with the 663 

classification task. For example, although the inner cell mass (ICM) was a criterion used to 664 

define the blastocyst’s quality label, and thus used to optimize the classification model, we failed 665 

to interpret a latent feature that encodes the blastocyst’s ICM (Fig. S8). One possible explanation 666 

for this inability to interpret the ICM is that other morphological properties may collectively 667 

contain the discriminative information encoded in the ICM, and thus, DISCOVER cannot encode 668 
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the ICM as a classification-driving feature in its latent representation. Indeed, several studies 669 

reported that ICM was not an independent predictor of live birth outcome (Ahlström et al. 2011, 670 

Hill et al. 2013, Thompson et al. 2013). However, other studies reported that ICM had 671 

independent discriminative value (Richter et al 2001, Sivanantham et al. 2022). Another possible 672 

explanation is that ICM quality could be explained by combining several more local 673 

morphological properties, i.e., it is encoded by multiple classification-driving latent features. 674 

Third, we applied DISCOVER to interpret high-performing classification models. Would 675 

DISCOVER enable interpretability for less accurate classification models (e.g., Zaritsky et al. 676 

2021)? How well? These are open questions that were not discussed in previous papers, nor here, 677 

and will be explored in future studies. We speculate that less accurate classification models will 678 

yield more ambiguous visual explanations, thereby making human interpretation less 679 

straightforward. Last, we applied DISCOVER to interpret binary classification models. Moving 680 

beyond binary classification should be possible by (i) connecting the classification driving subset 681 

of latent features to a dense layer of size equal to the number of classes (instead of one neuron) 682 

with a softmax (instead of a sigmoid) activation. (ii) changing the classification-driving subset of 683 

latent features loss from binary to categorical cross-entropy. (iii) interpreting the classification-684 

driving semantic image properties predictive of a specific class by identifying latent features that 685 

correlate with the corresponding softmax probability output. Multi-class interpretability is left for 686 

future work.  687 
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Methods 688 

IVF data collection, annotation and ethics 689 

11,211 embryo time-lapse videos were retrospectively collected from IVF cycles conducted at 690 

three clinic centers between March 2010 and December 2021. Historical images of blastocyst-691 

stage embryos and metadata were provided by AIVF LTD. All procedures and protocols were 692 

approved by an Institutional Review Board for secondary research use (IRB reference number 693 

HMO-006-20). Fertilization (time = 0) was determined by the presence of two pronuclei (2PN) 694 

16-18 hours after insemination. All zygotes were placed inside the EmbryoScope™ time-lapse 695 

incubator system (Vitrolife, Denmark), incubated using sequential media protocol until 696 

blastocyst-stage, and live imaged with temporal resolution of 15-20 minutes per frame. Each 697 

gray-scale image (8bit) was of size 500x500 pixels, with physical pixel size of 294x294 𝑢𝑚2. Z-698 

stacks consisting of 7 slices, 15 µm apart, were acquired at each time point, where the middle 699 

slice was used for analysis. Analysis was performed for embryos at the blastocyst stage, with 700 

typical onset of blastulation occuring ~103 hours post insemination based on manual annotation 701 

of blastulation and hatching (end of blastulation). 6-10 frames from embryos at the blastocyst 702 

stage were collected with an equal time interval between them. High saturated images and 703 

images with a partially visible blastocyst were excluded. Overall, approximately 67,000 images 704 

were used to train DISCOVER. Blastocysts were manually annotated by embryologists, just 705 

before hatching or before the removal of the embryo from the microscope, according to the 706 

Gardner and Schoolcraft (known as “Gardner”) scoring criteria, one of the most common 707 

morphology-based blastocyst assessment criteria (Gardner et al. 1999). The Gardner criteria is 708 

based on three morphology-based quality parameters: (Fig. 1A): Blastocyst expansion status – 709 

volume and degree of expansion of the blastocyst cavity (graded 1-6); inner cell mass (ICM) 710 

morphology – size and degree of compaction of the mass of cells eventually forming into the 711 

fetus (graded A-C); and Trophectoderm (TE) morphology – number and cohesiveness of the 712 

single cell layer surround the outer blastocyst eventually forming into the placenta (graded A-C) 713 

(Gardner et al. 1998, Gardner et al. 2000). Blastocyst expansion status was not annotated in our 714 

dataset. High quality blastocysts were defined by corresponding ICM and TE labels of AA, AB, 715 

or BA, low quality blastocysts by BB, BC, or CB.  716 

 717 
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Data preprocessing 718 

The image pixel intensities were normalized to the range [0,1]. To accommodate IVF-CLF 719 

training on a single GPU (~30 hours on Nvidia GeForce RTX 3090), the blastocysts images were 720 

preprocessed to reduced size, and their background was masked to reduce irrelevant information. 721 

Briefly, the preprocessing steps were (1) semantic segmentation of the blastocyst from the raw 722 

image, (2) centering the blastocyst in the image, and (3) resizing the image to a lower resolution. 723 

Specifically, we trained a mask-RCNN object detection model (He et al. 2017) to detect 200x200 724 

pixels bounding boxes around each blastocyst, using 800 raw images with manually annotated 725 

blastocysts’ bounding boxes. Hough-transform (Coste et al. 2012) detected the blastocyst 726 

circular shape within the mask-RCNN bounding box and was used to mask the non-blastocyst 727 

image regions and to center the blastocyst in the image. Next, a U-NET (Ronneberger et al. 728 

2015) was trained to segment the blastocyst using 500 out of the 800 images that were 729 

successfully segmented by the Hough transform (based on manual assessment). The U-NET 730 

architecture consisted of 4 convolutional blocks for the encoder (downsampling) with 32, 64, 731 

128 and 256 filters and 4 convolutional blocks for the generator (upsampling) with opposite 732 

number of filters. Each convolutional block included a 2D convolution layer, batch 733 

normalization and “relu” activation. Max pooling was used for the encoder blocks and 734 

upsampling convolution was used for the decoder blocks. The U-NET outputs a binary mask. 735 

At inference, the Mask-RCNN is first applied to the raw 500x500 pixels images to output a 736 

bounding box localizing the region of the blastocyst. Next, the U-NET uses the localized region 737 

and outputs a binary mask, further localizing the blastocyst region. The Hough transform fits a 738 

circular contour to the binary mask. This contour mask is multiplied by the Mask-RCNN output 739 

to obtain a blastocyst and masked background image. Using the center 2D coordinate of the 740 

circular fit, we can center the blastocyst in the image. Finally, the segmented image is resized to 741 

64x64 pixels using nearest neighbors interpolation. The preprocessing pipeline is presented in 742 

Fig. S1. Images where the blastocyst was not segmented well (partially cut or large background 743 

area remained ) were excluded based on visual inspection. 744 

 745 
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Classification of high- versus low-quality blastocysts 746 

An ImageNet pretrained VGG-19 network (Simonyan et al. 2014) was fine-tuned by re-training it 747 

to discriminate between high- versus low-quality blastocysts (IVF-CLF classifier, Fig. 1C) using 748 

a balanced training dataset of 977 high-quality and 977 low-quality blastocysts. Our test dataset 749 

was composed of 108 high-quality and 108 low-quality blastocysts. The IVF-CLF architecture is 750 

composed of the VGG-19 feature extraction part, which includes several blocks in which each has 751 

a downsample convolution layer followed by batch normalization, ReLU activation and a final 752 

flatting layer. The last fully connected layer of the pretrained VGG-19 layer (which predicts the 753 

1000 classes of ImageNet) was replaced with a fully connected 16 node dense layer and an output 754 

node dense layer with a sigmoid activation, which corresponds to a probability of a high quality 755 

blastocyst (0-1). The model was compiled with binary cross entropy loss and Adam optimizer with 756 

a learning rate of 0.002. The IVF-CLF network was trained for 100 epochs with a batch size of 32. 757 

We performed augmentation by altering brightness, flipping, rotating and by adding Gaussian 758 

noise.  759 

 760 

DISentangled COunterfactual Visual interpretER (DISCOVER) architecture and 761 

optimization 762 

DISCOVER was designed toward generative interpretability by simultaneously optimizing the 763 

following properties (Fig. 2A-B): high-quality and realistic reconstruction of the latent space 764 

(loss #1), smooth and realistic traversal of the latent space through its reconstructed images (loss 765 

#2), domain-specific classification oriented encoding (loss #3), decorrelated latent space (loss 766 

#4), counterfactual disentanglement (loss #5), and a classification-driving subset of latent 767 

features that correlated with the classifier that is being interpreted (loss #6). More specifically. 768 

Image reconstruction and latent space traversal (losses #1-2) 769 

High-quality and realistic reconstruction and traversal of the latent space was achieved with an 770 

adversarial autoencoder (AAE, Makhzani et al. 2015) that was optimized toward a lower 771 

dimensional embedded representation of blastocyst images by approximating the high-772 

dimensional data distribution of the input images. This embedding, called latent space, generates 773 
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a compressed representation that faithfully encodes the input blastocyst. Each blastocyst image is 774 

encoded to a point in the latent space that can be decoded to reconstruct an image that appears 775 

nearly identical to the original input. The adversarial loss forced the encoded latent 776 

representation embedding towards an aggregated posterior distribution similar to a normal 777 

distribution in order to achieve a stochastic continuous model to sample from during traversal 778 

(Makhzani et al. 2015). The encoder (Table S1) and decoder (Table S2) networks backbone were 779 

based on residual blocks similar to the ones introduced in Resnet50 (He et al. 2016). The outputs 780 

of the last convolutional downsampling block were flattened to a vector followed by a dense 781 

layer of 350 dimensions (determined empirically) that defined the latent representation. The 782 

discriminator network was composed of six fully connected dense layers (Table S3).  783 

The reconstruction loss (loss #1) was a perceptual loss where the reconstruction minimized the 784 

Euclidean distance between the hidden layers of a VGG-19 pre-trained on ImageNet (called 785 

Imagenet-CLF). Perceptual loss was preferred over minimizing L1 or L2 pixel-wise differences 786 

because the latter lead to blurry, and less realistic reconstructed images (Fig. S4A) . Perceptual 787 

loss enforces spatial consistency between the real and the reconstructed images which is 788 

important for human interpretability (Pihlgren et al. 2020, Zhang et al. 2018 ). More technically, 789 

for a blastocyst image x, and its corresponding reconstructed image xrec, we extracted the hidden 790 

representations of the Imagenet-CLF network: Imagenet-CLF(x)i and Imagenet-CLF(xrec)
i from 791 

layers i =[block3_conv1, block3_conv2, block3_conv3, block4_conv1, block4_conv2, 792 

block4_conv3, block4_conv4, block5_conv1, block5_conv2, block5_conv3, block5_conv4]. For 793 

every layer the mean absolute error (MAE) was calculated and the overall losses was an average 794 

of these per-layer (i) errors:  795 

LImageNet-CLF = ∑i MAE( Imagenet-CLFi(x) , Imagenet-CLFi(xrec)) 796 

The latent generative-adversarial loss (loss #2) enforced a probabilistic latent space such that 797 

samples were encoded into a continuous dense distribution. Adversarial losses are designed to 798 

fool a discriminator: a discriminator network (D) is trained to predict if an input vector comes 799 

from the latent representation of the encoded images z, or drawn from the normal distribution 800 

with mean 0 and variance of 1, znoise. The adversarial loss pushes the encoder to output latent 801 

representations with a similar normal distribution. The discriminator receives either the encoder 802 
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output z or a noise vector znoise and predicts the source (encoded versus noise). The discriminator 803 

loss is a binary cross-entropy loss: 804 

Ldisc = log(D(znoise)) + log(1 - D(z))   805 

and the encoder (E) adversarial loss is: 806 

Ladv = log(D(E(x)) 807 

Classification oriented encoding (loss #3)  808 

Subtle image differences can lead to major differences in the classification outcome. Thus, to 809 

ensure that the visual semantic properties influencing the classification decision are maintained 810 

in the reconstructed image, we introduced a loss term that minimized the discrepancy between 811 

the IVF-CLF hidden representations of the real versus its corresponding reconstructed image 812 

(Fig. 2A). Similarly to loss #1, we minimized the perceptual loss by extracting the hidden 813 

representations of the IVF-CLF network: IVF-CLF(x)i and IVF-CLF(xrec)
i from layers i = 814 

[block3_conv1, block3_conv2, block3_conv3, block4_conv1, block4_conv2, block4_conv3, 815 

block4_conv4, block5_conv1, block5_conv2, block5_conv3, block5_conv4, flatten, dense]. For 816 

every layer the mean absolute error (MAE) was calculated and the overall losses was an average 817 

of these per-layer (i) errors:  818 

LIVF-CLF = ∑i MAE( IVF-CLFi(x) , IVF-CLFi(xrec)) 819 

Disentangled latent representation (losses #4-5) 820 

The disentanglement module (Fig. 2B) was designed to encode the image into a decorrelated 821 

latent space, where each latent feature is independent (i.e., decorrelated) from the others (loss #4) 822 

and is associated with a distinct visual property in the image (loss #5). 823 

A decorrelated latent representation encourages each latent feature to be independent of other 824 

latent features. We included a loss which whitens the latent features’ covariance matrix (i.e., 825 

driving it to become a unit matrix), by optimizing toward diagonal values of 1 and off-diagonal 826 

values to 0, similar to (Bardes et al. 2021): 827 

LCOV = 0.5*(diag(cov(z))-1) + 0.5*(off_diag(cov(z))) , where z=enc(x) 828 
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Disentanglement of the latent representation enables traversal of the latent space one feature at a 829 

time under the assumption that each latent feature encodes an independent classification-driving 830 

visual image features. To enforce that a specific latent feature is associated with a specific image 831 

property we minimized the error of an additional neural network that was trained to identify 832 

which latent feature was altered upon alteration of a single latent feature. This was implemented 833 

by (1) altering a randomly selected latent feature value in the range of ±1.5 standard deviations, 834 

(2) using the decoder to reconstruct a blastocyst image from the altered latent vector, (3) 835 

constructing a “diff image”, the subtraction of the altered reconstructed image from the unaltered 836 

reconstructed image, (4) A disentanglement network (Table S4) is trained to predict the index of 837 

the latent feature that was altered from an input of the “diff image”. The disentanglement 838 

network was implemented by down sampling convolutions followed by a flattening layer and a 839 

dense layer equal to the size of the latent space (Nz = 350) along with a Softmax activation, and 840 

outputs a latent feature probability. Categorical cross-entropy (CCE) loss was used to minimize 841 

the difference between the output prediction vectors of the network after softmax activation ypred 842 

and the one-hot encoding vector ytrue, where the altered latent feature value was set to 1 and all 843 

other latent features were set to a value of 0: 844 

Ldisentangle = 1/Nz· Σ(ytrue · log(ypred))  845 

Note that the backpropagation of this loss term goes all the way back through the decoder and 846 

encoder, thus enforcing visual disentanglement as an inherent property of the latent 847 

representation. 848 

Classification-driving subset of latent features (loss #6)  849 

We designed a loss to partition the latent representation to two subsets: (1) 14 latent features that 850 

are correlated to the IVF-CLF classification score, i.e., associated with semantic properties 851 

driving the classifier’s decision; (2) The other 336 latent features maintain high-quality 852 

reconstruction without enforcing correlation to the IVF-CLF score. We call the first subset 853 

“classification-driving”, and the latent features in this subset can be altered to create 854 

reconstructed blastocysts images with corresponding alteration in the IVF-CLF classification 855 

output and thus can be used toward interpretation of the semantic classification-driving physical 856 

properties that they encode. The size of the classification driving subset was determined under 857 

the assumption that a small subset would be more interpretable. The counterfactual 858 
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disentanglement network was implemented as a single neuron trained to predict the IVF-CLF’s 859 

classification score from the classification driving subset, which were the first 14 features in the 860 

latent representation. The latent features in classification driving subset were connected via a 861 

dense layer to the single classification neuron with a sigmoid activation (Zsubset_score), and the 862 

binary cross entropy (BCE) between the prediction and the IVF-CLF scores was minimized.  863 

Lclassification_subset = BCE(Zsubset_score, IVF-CLF(x)) 864 

 865 

Optimization 866 

The necessity of all loss terms was verified via ablation experiments (Fig. S4). The overall loss 867 

of DISCOVER was defined as the addition of all six loss terms, with weights 𝜆1=5, 𝜆2=1, 𝜆3=5, 868 

𝜆4=1, 𝜆5=1, 𝜆6=1, that were adjusted empirically by observing that the reconstruction losses were 869 

converging slower than other losses. Thus, the following loss was minimized during training: 870 

LossAE = 𝜆1*LImageNet-CLF + 𝜆2*Ladv + 𝜆3*LIVF-CLF + 𝜆4*LCOV + 𝜆5*Ldisentangle + 𝜆6*Lclassification_subset  871 

DISCOVER was trained with Adam optimizer, learning rate of 0.0002 and batch size of 64. It 872 

was trained for 30 epochs. In each iteration, images were chosen randomly and the following 873 

augmentations were performed for the IVF dataset: (1) brightness - randomly multiplying each 874 

image by a factor of -0.2 to 0.2. (2) flip - randomly flipping images horizontally and vertically. 875 

(3) rotation - randomly rotating images by 0, 90, 180, or 270 degrees. (4) noise - introducing per-876 

pixel Gaussian noise was added with mean 0 and standard deviation of 0.1. (5) saturation - 877 

random pixels’ gray levels were saturated.  878 

 879 

Visualization of counterfactual alteration 880 

Counterfactual alterations, the changes in image properties associated with the change of a latent 881 

feature, were visualized using the Structural Similarity Index (SSIM) (Renieblas et al. 2018). 882 

SSIM has been demonstrated to be in agreement with how humans observe differences between 883 

two images. SSIM evaluates the similarity of two images by comparing spatially matched pairs 884 

of image patches using the average, standard deviation and covariance of each patch. For 885 

visualization, each pixel was assigned the value 1-SSIM, corresponding to the dissimilarity 886 
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between the two corresponding patches of 7x7 pixels surrounding the pixel. This was followed 887 

by smoothing with a convolution with a gaussian filter of size 3x3 to define what we call the 888 

“visual counterfactual alteration“.  889 

 890 

Quantitatively validating latent features interpretation 891 

To systematically and quantitatively link latent features #0 and #10 to their corresponding 892 

interpreted morphological properties, we had to reduce the confounding effect of the correlated 893 

blastocysts’ size and TE. Thus, we matched pairs of blastocysts according to having one similar 894 

morphological property, and the other morphological property being different. More specifically, 895 

to verify that latent feature #0 is associated with blastocyst size, we paired blastocysts according 896 

to (i) same embryologist-annotated TE grades, i.e., both blastocysts with grade ‘A’ or both with 897 

grade ‘B’; (ii) at least 30% difference in their sizes, i.e., the size of the larger blastocyst was ≥ 898 

1.3 times of the smaller blastocyst. Blastocyst size was computed from the segmented blastocyst 899 

masks as described earlier (see the subsection “Data preprocessing”). A total of 5,888 900 

blastocysts’ pairs were matched according to these criteria. To measure the association between 901 

each of the 14 classification-driving subsets of latent features and the blastocyst size, we 902 

calculated the distribution of signed differences of each latent feature between the larger and the 903 

smaller blastocysts in the matched pairs (Fig. 4A). Importantly, the subtraction order was flipped 904 

for latent features that were negatively correlated with the IVF-CLF scores (Fig. 2F). The 905 

purpose of adjusting the subtraction order according to the correlation sign was to enable direct 906 

ranking ordering of the associations between the latent features and the blastocyst size, for 907 

matched blastocysts (with the same TE annotations), according to the median of each (latent 908 

feature specific) signed differences distribution (Fig. 4B-C). The direct comparison between 909 

distributions was enabled by z-score normalization of the latent features.  910 

Similar analysis was performed to verify that latent feature #10 was associated with the 911 

blastocyst TE quality. Blastocysts were paired according to (i) different embryologist-annotated 912 

TE grades, i.e., one blastocysts with grade ‘A’ and the other with grade ‘B’; (ii) no more than 7% 913 

difference in their sizes. A total of 808,326 blastocysts’ pairs were matched according to these 914 

criteria. Similarly to the analysis that linked latent feature #0 to blastocyst size, we measured the 915 

association of each of the 14 classification-driving subsets of latent features and the blastocyst 916 
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TE quality, where the order of subtraction was determined according to the sign of the 917 

correlation between the latent feature values and the IVF-CLF scores.  918 

 919 

Instance interpretation  920 

To quantify the latent features importance to the classification prediction we used Shapley 921 

additive explanation (SHAP) (Lundberg et al. 2017). We applied SHAP on DISCOVER’s single 922 

layer perceptron which receives as input the 14 classification-driving subset of latent features 923 

and is connected to a single neuron upon which a sigmoid activation is applied to predict the 924 

IVF-CLF score (Fig. 6A). The estimated average SHAP values for each latent feature was 925 

calculated using a random subset of 200 samples (Fig. S6).  926 

 927 

Embryologists qualitative feedback and quantitative validations 928 

Embryologists provided qualitative feedback and participated in a user-study to quantitatively 929 

validate our interpretations. For qualitative feedback of GradCAM’s interpretability, two 930 

embryologists were presented with visual explanations of 18 blastocysts (those shown Fig. 1E) 931 

obtained by GradCAM, highlighting the important localized regions of the IVF-CLF’s final 932 

convolutional block. The embryologists were asked whether the GradCAM visualizations 933 

provide insight regarding the blastocyst’s morphological properties that were learned by the 934 

model. For qualitative feedback of DISCOVER’s disentanglement and interpretability, two 935 

embryologists were presented with counterfactual visual alterations of the same blastocyst 936 

according to the alteration (± 3 standard deviations) of the five latent features most correlated to 937 

the IVF-CLF (see example in Fig. 3B, this evaluation was performed for 3 blastocysts). The 938 

embryologists were asked to interpret the morphology that changed between the counterfactual 939 

explanations for each of the latent features. To qualitatively validate our interpretation of latent 940 

features #0 and #10 as encoding the blastocyst size and TE, respectively, two Embryologists 941 

were (i) presented with the counterfactual visual alterations of 16 blastocysts (Fig. S5), (ii) 942 

presented with a sequence of gradually altered traversals (± 3 standard deviations) along each 943 

latent feature (Fig. 3C), (iii) presented with a sequence of nine blastocysts randomly selected and 944 

ordered according to their corresponding latent feature values, in equal intervals along the range 945 
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of ± 3 standard deviations, for latent features #0 and #10 (Fig. 3D). For each of these 946 

evaluations, the embryologists were asked to describe which visual property was mostly 947 

dominant. Latent feature #11 was interpreted and qualitatively validated to be associated with the 948 

blastocoel density by presenting to a trained embryologist and two other IVF experts (i) 949 

counterfactual visual alterations of 5 blastocysts (Fig. 5B), (ii) a sequence of 9 real blastocysts 950 

that were randomly selected from predefined intervals of i latent feature #11 in monotonically 951 

increasing order (Fig. 5C). To quantitatively verify that latent features #0 and #10 encode the 952 

blastocyst size and TE, respectively, we performed an empirical user study. For the user study 953 

we matched 39 blastocyst pairs according to a similar value (< 0.1) of latent feature #0, and a 954 

different value (> 0.5) of latent feature #10. values, and 36 blastocyst pairs according to a similar 955 

value (< 0.05) of latent feature #10 and different value (> 0.6) of latent feature #0 values. The 956 

different thresholds for “similar” or “different” were selected to achieve a close number of 957 

blastocyst pairs selected according to each of the two conditions. These 75 blastocyst pairs were 958 

presented, in a random order, to an embryologist that was asked to determine which morphology 959 

(size or TE) was more different between the two blastocysts in each pair. Additionally, the 960 

embryologist was asked to determine which blastocyst within each pair had a higher grade of 961 

that dominant morphology. A confusion matrix and accuracy results of our user study are 962 

reported in Fig. S3.  963 

To qualitatively verify the interpretation of specific blastocysts’ classification (see the subsection 964 

“Instance interpretation”), three high quality and three low quality blastocysts were randomly 965 

selected according to the following criteria: two with SHAP-dominating latent feature #0 (Fig. 966 

6B left), two with SHAP-dominating latent feature #10 (Fig. 6B middle), and two with SHAP-967 

dominating latent features #0 and #10 (Fig. 6B right). These six blastocysts were presented to an 968 

embryologist who visually verified the instance-specific SHAP feature importance according to 969 

our mapped interpretation (latent feature #0/#10 encode size/TE). Similarly, three blastocysts 970 

composed of two positive and one negative SHAPE-dominating latent feature #11 were 971 

randomly selected and visually verified the instance-specific SHAP feature importance according 972 

to our mapped interpretation (blastocoel) by the embryologist.   973 

 974 
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CelebA faces dataset, preprocessing, gender classification, and DISCOVER interpretability 975 

The celebA dataset (Liu et al. 2015) contains 202,599 aligned and cropped RGB images (64x64 976 

pixels) of 10,000 celebrities' faces with an associated male/female attribute (as well as additional 977 

40 binary annotations such as smile, hat etc.). We trimmed 15 pixels from each side to remove 978 

background nuisance and the image was then resized back to 64x64 pixels. All images were 979 

converted to grayscale and divided by 255 to the range [0-1]. A VGG-19 classification model 980 

was trained to discriminate between male and female face images, we call this model GENDER-981 

CLF. The training followed the same procedure described for IVF-CLF (see Fig. 1C, and earlier 982 

in the Methods). 15,000 images from each gender were randomly selected for training. The AUC 983 

for the test data (1,000 images for each gender) was 0.96 (Fig. S7A). No augmentations were 984 

used in this training. We trained a DISCOVER network to interpret GENDER-CLF. The 985 

differences in training, in respect to interpreting IVF-CLF were a training set composed of 986 

164,268 (65,183 male and 99,085 female) images without augmentations. 987 

 988 

Statistical analysis 989 

ROC-AUC (sklearn.metrics.auc function) was used to evaluate the performance of the classifier 990 

models (Fig. 1D, Fig S7). Pearson correlation (scipy.stats.pearsonr function) was used to assess 991 

the inner correlations between the latent features (Fig. S2) and the correlation between each 992 

latent feature and classifier score (Fig. 2F). Mann–Whitney-U test (scipy.stats.mannwhitneyu) 993 

was used to calculate the p-value of the 14 classification-driving subset of latent features out of 994 

the entire latent feature representation. 995 

 996 

Code and data availability 997 

The source code (Python with Tensorflow 2.2) for training a binary classifier, training a 998 

DISCOVER interpretability model and a demonstration of performing blastocyst classification 999 

interpretability using a trained DISCOVER model are publicly available, 1000 

https://github.com/OdedRotem314/DISCOVER. We are currently working toward contributing 1001 

these models to the Bioimage Model Zoo to make them more accessible (Ouyang, 1002 
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Beuttenmueller, Gómez-de-Mariscal, et al. 2022). 1003 

This repository also includes a trained model for gender classification and its corresponding 1004 

DISCOVER model. The celebA dataset is available 1005 

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.  1006 

  1007 
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