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Abstract 
 

In silico labeling prediction of organelle fluorescence from label-free microscopy images has the 

potential to revolutionize our understanding of cells as integrated complex systems. However, changes 

in the intracellular organization across cell types, throughout biological processes and perturbations, can 

lead to altered label-free images and impaired in silico labeling. We demonstrated that incorporating 

biological meaningful cell contexts, via a context-dependent model that we call CELTIC, enhanced in 

silico labeling prediction and enabled downstream analysis of out-of-distribution cell populations such 

as cells undergoing mitosis, and cells located at the edge of the colony. These results suggest a link 

between cell context and intracellular organization. Using CELTIC for generative traversal along single 

cells undergoing context transition enabled integrated characterization of the gradual alterations in 

cellular organization across multiple organelles, overcoming inter-cell variability. The explicit inclusion 

of context has the potential to harmonize multiple datasets, paving the way for generalized in silico 

labeling foundation models.  

 
                
  



4 

 

Acknowledgments 
 

I would like to express my deepest gratitude to my supervisor, Prof. Assaf Zaritsky, for his exceptional 

mentorship. His patient guidance, enthusiasm for new ideas, and encouragement of free thinking and 

innovation have been invaluable throughout this journey. I am also grateful to Lion Ben Nedava for 

guiding me through the initial steps of my research and always offering wise advice. Special thanks to 

Matheus Viana and Jianxu Chen from the Allen Institute for collaborating with us and offering 

thoughtful suggestions. To my children - Maya, Noam, and Ella - thank you for your patience and love 

during the many weekends and late nights of absence. Finally, my deepest thanks to my partner, Michal, 

who was not only a keen biological advisor to my many questions but also walked alongside me through 

every moment of this journey. 

                                         
  



5 

 

Contents 
 

Abstract ............................................................................................................................................... 3 

Acknowledgments .............................................................................................................................. 4 

Contents .............................................................................................................................................. 5 

List of Figures & Tables .................................................................................................................... 6 

Introduction ........................................................................................................................................ 7 

Related Work ..................................................................................................................................... 9 

In silico labeling.............................................................................................................................. 9 

Fusing image and tabular data ................................................................................................... 10 

Results ............................................................................................................................................... 11 

Deteriorated in silico labeling for rare cell populations ....................................................... 11 

CELTIC, cell-context dependent in silico labeling ............................................................... 15 

Cell-context contributes to the in silico labeling of rare cell populations ........................... 17 

Predicting spindle axis in mitotic cells enabled by CELTIC ............................................... 20 

Context-dependent generative organelle localization with CELTIC .................................. 23 

Discussion.......................................................................................................................................... 27 

Methods ............................................................................................................................................. 29 

Data ........................................................................................................................................... 29 

In silico labeling replication .................................................................................................... 29 

Single cell models image preprocessing ................................................................................. 30 

Context Representations ......................................................................................................... 30 

CELTIC architecture .............................................................................................................. 31 

CELTIC training and test analysis ........................................................................................ 32 

Ablation study .......................................................................................................................... 33 

Spindle prediction .................................................................................................................... 33 

Using context for image generation ........................................................................................ 33 

Supplementary Information ........................................................................................................... 35 

References ......................................................................................................................................... 46 

 53 .................................................................................................................................................. תקציר 

 

  



6 

 

List of Figures & Tables                                

 

Figure 1 Inferior in silico labeling for rare cell populations 13 

Figure 2 CELTIC - incorporating the cell context to the in silico labeling models 16 

Figure 3 Qualitative and quantitative assessment of CELTIC’s contribution to the in 

silico labeling of rare cell populations 

18 

Figure 4 Application-appropriate downstream analysis: in silico prediction of the 

spindle axis location and orientation 

21 

Figure 5 In silico labeling generation of variable cellular contexts 25 

Figure S1 Distribution of single cell in silico labeling performance across organelles for 

rare cell populations 

35 

Figure S2 CELTIC architecture 36 

Figure S3 Ablation study showing the impact of different context types on in silico 

labeling of rare cell populations 

37 

Table S1 Results of replicating the U-Net-based in silico labeling model as reported in 

(Ounkomol et al. 2018) 

38 

Table S2 In silico labeling accuracy analysis in rare cell populations 39 

Table S3 Comparison of single-cell in silico labeling accuracy between rare populations 

with context (CELTIC) and without context (U-NET) 

41 

Table S4 Ablation study on the contribution of each context type to in silico labeling of 

rare populations 

43 

     

 

 

 

 

      
  



7 

 

Introduction 

 
Organelles act in concert to shape and enable cell function. Accordingly, the organization of organelles 

and the spatial relations between different organelles are remarkably versatile and can change  in 

response to multitude factors including undergoing cellular processes such as proliferation (Carlton et 

al. 2020), migration (Kroll and Renkawitz 2024) or differentiation (Lee et al. 2018; Ahmed et al. 2022) 

, and being influenced by extrinsic factors such as local cell density and different microenvironmental 

conditions (e.g., mechanical stresses, diffusible factors, chemical treatments) (Miroshnikova and 

Wickström 2022; Ye et al. 2023). For instance, during mitosis, the nuclear envelope disassembles, the 

nucleus undergoes condensation and separation, the Golgi apparatus is disassembled and then reformed, 

and microtubules rearrange to form the mitotic spindle (Carlton et al. 2020). The ability to measure 

whether and how the intracellular organization of organelles change is fundamental to cell biology but 

is technically challenging due to substantial limitations in simultaneous labeling of multiple organelles 

within the same cell (Garini et al. 2006) . 

In silico labeling of organelles is the computational cross-modality translation of label-free transmitted 

light microscopy images to their corresponding organelle-specific fluorescent images (Elmalam et al. 

2024). In silico labeling holds the promise of enabling computationally multiplexed live cell imaging 

toward an integrated understanding of the cell (Sullivan and Lundberg 2018). Attaining an in silico 

labeling model involves the acquisition of matched label-free and fluorescently labeled images, and 

using them to train a deep learning model that maps the label-free images to their corresponding matched 

fluorescence images (Ounkomol et al. 2018). This training process is repeated for each organelle, 

producing a set of organelle-specific in silico labeling models (Fig. 1A, left). At inference, the organelle-

specific models can be applied to generate a multiplexed image displaying the localization of several 

organelles simultaneously (Cheng et al. 2021) (Fig. 1A, right). Several recent studies demonstrated that 

in silico labeling can be applied to reveal how the intracellular organelle organization, cell shape and/or 

cell behavior alters in response to different cell states and different experimental conditions  

(Christiansen et al. 2018; Kandel et al. 2020; Cheng et al. 2021; Kandel et al. 2021; Jo et al. 2021; Ben-

Yehuda et al. 2022; Gu et al. 2022; Cross-Zamirski et al. 2022; Somani et al. 2022; Wang et al. 2023; 

Noy et al. 2023; Atwell et al. 2023; Asmar et al. 2024; Ivanov et al. 2024; Liu et al. 2024). This 

forthcoming wave of in silico labeling applications to cell phenotyping raises a major question regarding 

generalization: are in silico labeling models confounded by cells that are not sufficiently represented  

during training? In principle, changes in the intracellular organization can alter the cell’s optical 

properties, inducing out-of-distribution label-free images and impaired in silico labeling. For example, 
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alterations in the cell’s internal organization due to changes in cell-cell adhesions in densely packed 

microenvironments may lead to changes in the cell’s optical properties that in turn can hamper high 

quality in silico labeling. Indeed, a few studies demonstrated inferior performance upon perturbations 

(Jo et al. 2021) or upon inference on a cell type different from the one seen on training (Tonks et al. 

2024) . This deteriorated accuracy in organelle localization is posing a limitation in generalizing in silico 

labeling and hampering the possibility of using in silico labeling to understand how intracellular 

organelle organization is changing across cell types, throughout biological processes and following 

perturbations . 

Here we focus on the problem of out-of-distribution label-free images due to rare cellular states and 

contexts that are under-represented in the training data. We report a decreased performance of in silico 

labeling for rare cell populations, and introduce a new method called CEll in silico Labeling using 

Tabular Input Context, or CELTIC, to overcome this limitation. CELTIC improves in silico labeling of 

rare cell populations by incorporating biological meaningful cell context (encoded as tabular data) to the 

in silico labeling model. We show that by inclusion of cell context CELTIC enhances the in silico 

labeling of rare cell populations, especially organelle localization patterns associated with that context. 

We demonstrate that CELTIC has the potential to reveal alterations in intracellular organization between 

different cell contexts. 
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Related Work 
 

 

In silico labeling 

Monitoring multiple organelles simultaneously is crucial for understanding cellular interaction networks 

(Valm et al., 2017). However, limitations in imaging techniques - such as photo-toxicity during extended 

imaging periods, photobleaching, and constraints on the number of distinguishable parallel stain 

channels due to overlapping fluorophore emissions - hinder comprehensive analyses of cellular 

heterogeneity and dynamics (Garini et al., 2006; Icha et al., 2017). In 2018, in silico labeling was 

introduced as a deep learning method that transforms label-free microscopy images into synthetic 

fluorescent images of specific organelles, thus enabling long-term, multi-organelle imaging while 

overcoming these limitations (Christiansen et al., 2018; Ounkomol et al., 2018). Since its introduction, 

in silico labeling has been adapted and extended to a variety of organelles, cell types, and imaging 

modalities, such as for organelle segmentation in electron microscopy data (Heinrich et al., 2021) and 

for transforming phase images of tissue slides into pathologically stained images (Rivenson, Liu, et al., 

2019).  

In silico labeling is referred to by various terms, including 'augmented microscopy' and 'virtual staining' 

(Z. Wang et al., 2021). It has been successfully applied to cell tracking (Pylvänäinen et al., 2023) and 

segmentation (Heinrich et al., 2021), particularly for nuclear and membrane marker predictions from 

label-free images. This approach enables analyses of cell motility (Atwell et al., 2023), shape dynamics, 

and behavior under different experimental conditions, including differentiation and viral infection 

(Ivanov et al., 2024) . The technique has proven effective in both 2D and 3D cultures (X. Chen et al., 

2023), even with low-resolution images (LaChance & Cohen, 2020). Moreover, in silico labeling 

demonstrates great potential in high-content phenotypic screening (Cross-Zamirski et al., 2022), DNA 

fragmentation analysis in sperm cells (Noy et al., 2023), live-cell phenotyping during viral infection 

(Ivanov et al., 2024) , long-term tracking of cellular growth (Kandel et al., 2020), mitochondrial 

dynamics (Somani et al., 2022), and the inference of cell types and states (Christiansen et al., 2018).  

The accuracy of in silico labeling models varies across organelles. High-quality predictions have been 

reported for organelles such as the nuclei and lipid droplets while some organelles such as the Golgi 

apparatus and microtubules suffer from poor quality (Elmalam et al., 2024). Even with high accuracy, 

in silico labelling is not error free. Thus, the full potential of the technique is currently constrained by 

partial accuracies and the influence of prediction errors on downstream analyses. To improve in silico 
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labeling accuracy, several studies have employed advanced deep learning architectures, including 

attention based models (Rivenson, Wang, et al., 2019; Z. Wang et al., 2021), generative adversarial 

networks (Cross-Zamirski et al., 2022) and multitask learning (Christiansen et al., 2018), though the 

gains remain modest. Quantitative phase imaging, a label-free imaging modality, holds promise for 

enhancing in silico labeling by providing more organelle-specific optical contrast (Park et al., 2023). 

Additionally, there is a growing discourse on transitioning from pixel-based correlation and 

reconstruction error metrics to application-specific evaluation metrics (LaChance & Cohen, 2020). This 

paper demonstrates an example of such a metric for spindle axis prediction, which could better assess 

the biological relevance of labeling outcomes. 

 

Fusing image and tabular data 

Integrating image and tabular data within a single neural network often involves concatenating the latent 

space of the image with a vector representation of the tabular data, followed by a linear layer for tasks 

such as classification (Pölsterl et al., 2020). An alternative, although less efficient, approach employs a 

two-step process in which the latent representations from a convolutional neural network are input to a 

separate network designed solely for the tabular data (Li et al., 2019). Conversely, more advanced 

techniques allow for nonlinear contributions from the tabular data by integrating multiple layers with 

activation functions (Mobadersany et al., 2018). However, these methods are prone to overfitting and 

may suffer from low quality as they primarily interact with the global image descriptor through 

concatenation, as noted in (Wolf et al., 2022).  

(Mati, 2015) trains a network that learns a scalar from the tabular data, which is then utilized to rescale 

the image feature maps. (Perez et al., 2018) enhances this technique by adding a shifting of the feature 

map, for visual reasoning and question-answering tasks. (Wolf et al., 2022) further developed this 

integration with the Dynamic Affine Feature Map Transform (DAFT), which effectively fuses tabular 

data with brain MRI images. DAFT has been employed by (Płotka et al., 2023) to predict fetal birth 

weight by merging fetal ultrasound video scans with clinical data. In (White et al., 2024) it was applied 

to fuse demographic and clinical characteristics with MRI images for predicting post-stroke symptoms. 

(Rickmann et al., 2023) used DAFT to incorporate prior information regarding gallbladder resection 

with MRI feature maps to improve segmentation accuracy. 
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Results 
 

Deteriorated in silico labeling for rare cell populations  

We used 3D spinning-disk microscopy images of genetically edited fluorescent human induced 

pluripotent stem cell lines (hiPSC) colonies from the Allen Institute for Cell Science (AICS) WTC-11 

hiPSC Single-Cell Image Dataset v1 (Viana et al. 2023). The dataset comprises 3D field of view images, 

each containing label-free (brightfield), and a specific genetically edited EGFP-tagged protein 

representing an organelle. In addition, the dataset contains cell segmentation masks and metadata 

regarding the individual cells, that includes annotations regarding the cell cycle stage (interphase / 

prophase / early prometaphase / prometaphase-metaphase / anaphase-telophase-cytokinesis), and its 

location within a colony (interior / edge). We decided to focus on six organelles that span the range of 

in silico labeling performances reported in (Ounkomol et al. 2018). Organelles with high performance 

in silico labeling included the nuclear envelope, actin filaments, and microtubules (average pixel-wise 

Pearson correlation coefficient of ~0.78-0.88), organelles with intermediate performance included the 

mitochondria and endoplasmic reticulum (~0.66-0.73), and organelles with low performance included 

the Golgi apparatus (0.23). We replicated the U-Net-based (Ronneberger et al. 2015) in silico labeling 

model reported in (Ounkomol et al. 2018) and reproduced their results (Table S1).  

Our focus on the context of the single cell, required us to use the cells’ segmentation masks to isolate 

individual cells, and assign for each cell whether it was undergoing mitosis (non-dividing - interphase, 

or one of five mitotic stages), its location in the colony (whether it is located at the colony’s interior or 

edge), its volume, and its local density (i.e., number of adjacent neighboring cells in the colony). Overall 

we collected a single cell dataset consisting of 1,116-1,575 single cells per organelle, extracted from 

100 fields of view images that were never seen by the trained model for each organelle. Cells in 

interphase accounted for more than 95% of the cells in our dataset, cells located away from the colony’s 

edge accounted for over 98%, cells with typical volumes (i.e., z-score higher than -1.5 relative to the 

overall population distribution) accounted about 93%, and cells in microenvironment of  typical density 

(i.e., 5 or more adjacent neighbors) accounted for about 96% (Fig. 1B, Table S2). For each cell we 

measured the Pearson’s correlation coefficients (PCC) between the fluorescent ground truth and its 

corresponding in silico prediction. Overlaying a field of view PCC values onto the single cell 

segmentation masks showed poor endoplasmic reticulum in silico labeling for two cells in the 

prometaphase/metaphase stage of mitosis and for another cell located in a sparse neighborhood (Fig. 

1C). Similarly, cells in prometaphase/metaphase and early prometaphase stages of mitosis showed poor 
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in silico labeling for the nuclear envelope (Fig. 1D). To systematically evaluate this observation, we 

pooled all single cell PCC values across organelles and rare populations (Table S2). Cells undergoing 

mitosis displayed declined in silico labeling across all organelles compared to cells in interphase (Fig. 

1E). The most dramatic performance deterioration occurred for microtubules and for the nuclear 

envelope. Cells located at the colony edge exhibited inferior in silico labeling of the microtubules and 

actin (Fig. S1 A). Cells with small  volumes and cells in sparse microenvironments demonstrated 

reduced in silico labeling for most organelles, and most prominently for the nuclear envelope and actin 

(Fig. S1 B-C). These results underscore the inherent challenge of applying in silico labeling to rare cell 

populations, likely due to out-of-distribution intracellular organization and the corresponding changes 

in these cells’ optical properties. We hypothesize that incorporating context information about each cell 

will increase the performance of in silico label models and address the generalizability issue of these 

models to under-represented data. 
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Figure 1. Inferior in silico labeling for rare cell populations. (A)  In silico labeling. Training (left): an 

organelle-specific model receives label-free transmitted light images and their corresponding fluorescent targets 

and is trained to minimize the reconstruction error between the model’s prediction and the target. Inference (right): 

each organelle-specific model translates a label-free image to its corresponding predicted fluorescence image. 

The predictions can be combined to an integrated  multi-organelle image, which can be used for downstream 

analyses. (B) Distribution of rare cell populations in the dataset across a mixed population of six organelles, 

comprising 7,622 single cells. Left to right: Cell Stage: cells in interphase constitute >95% of the total population. 

The remaining 5 mitotic stages were distributed among the remaining 5%; Edge: 2.4% of cells were located at 

the colony edge; Volume: 2.2% of the cells had z-score lower than -1.5 relative to the population distribution; 

#Neighbors: 4.7% of the cells had few (4 or less) neighbors. (C and D) Cellular-level prediction accuracy label 

maps. Each colored region in the field of view (FOV)-based label map represents the replicated U-Net’s 

(Ounkomol et al. 2018) average Pearson correlation coefficient of a cell. Scale bar = 10μm. (C) Two cells in the 

prometaphase/metaphase stage of mitosis and one cell with a few neighbors with poor in silico labeling of the 

endoplasmic reticulum. (D) Two cells in the prometaphase/metaphase and early prometaphase stages of mitosis 

with poor in silico labeling of the nuclear envelope. (E) Distribution of single cell in silico labeling performance 

across organelles for cells in interphase (dark blue) versus mitosis (light blue). Mann-Whitney U test *** - p-

values < 0.001. Full results including in silico labeling performance, statistical tests and population sizes are 

available in Table S2. 
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CELTIC, cell-context dependent in silico labeling  

We propose CELTIC, an in silico labeling model that integrates cellular contextual information. 

CELTIC is an image-to-image translation model, where the innermost layer of the network (“bottleneck 

layer”) explicitly encodes predefined cell context parameters. The single cell centric approach required 

us to move from a field of view-based to a single cell-based in silico labeling (Fig. 2A). Specifically, we 

cropped single cells according to their corresponding fluorescent plasma membrane-derived 

segmentation masks. For this model, we transitioned to full-resolution z-slices (y = 624, x = 924), 

making direct comparison of the PCC metric with the initial model of (Ounkomol et al. 2018) infeasible 

(see Methods). We defined five types of context representations per cell (Fig. 2B). The first type of 

context was the mitotic state represented as a one-hot encoding vector. The second type was a binary 

indicator representing the cell’s position in the colony. The third and fourth context types encoded the 

cell's shape and morphology. The third type was a one-hot encoded vector from k-means clustering (k 

= 5) of shape descriptors (height, min/max width, volume). The fourth type used an autoencoder to 

compress binary cell masks derived from segmentation images into lower-dimensional morphology 

representations. These compressed representations were then clustered using k-means (k = 3), and each 

cell was subsequently represented by a one-hot encoded vector corresponding to its morphology cluster 

membership. The rationale for these shape and morphology representations is outlined in the Methods. 

Finally, the fifth context representation was a scalar quantifying the local density as the number of 

adjacent cells. These five context representations were concatenated to define a 16-dimensional context 

feature vector encoding the single cell context. 

CELTIC extends the classic U-Net architecture by incorporating the context vector to its deepest layer. 

We followed the footsteps of a recent method called DAFT (Wolf et al. 2022), that was previously 

applied with ResNet for classification tasks and more recently with U-Net for medical image 

segmentation (Rickmann et al. 2023). DAFT uses the cellular context vectors to affine-transform the 

bottleneck image representations (Fig. 2C, Fig. S2). In CELTIC, this approach enables the network to 

learn a unified representation that incorporates both the intrinsic image details encoded at the network 

deepest layer along with the contextual cellular information. 
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Figure 2. CELTIC - incorporating the cell context to the in silico labeling models. (A-B) Context 

extraction. (A) Single-cell images are cropped and masked. (B) Single cell context is extracted and 

represented by a 16-dimensional context feature vector, comprising five context types. The mitotic stage 

and the edge location indicator contexts were available in the AICS datatset’s metadata, other contexts 

are computationally extracted from the segmented cells and concatenated to define the context feature 

vector (magenta). (C) CELTIC’s architecture. Image patches are fed to CELTIC along with their 

corresponding context. The cell context is incorporated as an auxiliary input to the U-Net in silico 

labeling model transforming the U-Net’s bottleneck layer (yellow) into a context-enriched feature map 

(green) via the DAFT (Wolf et al. 2022) block (gray box with a detailed view on the right). DAFT uses 

its own bottleneck to fuse the image and context, creating a scaler and shifter that adjust the feature map 

accordingly (see Methods and Fig. S2 for more details). 
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Cell-context contributes to the in silico labeling of rare cell populations  

To evaluate the contribution of the cell’s context we compared the single cell-based in silico labeling of 

rare cell populations trained without (U-NET) or with (CELTIC) context. For cells undergoing mitosis, 

inclusion of  context contributed to better predictions of the endoplasmic reticulum and the nuclear 

envelope in dividing cells (Fig. 3A). Both models display poor performance in predicting microtubules 

mitotic spindle, but CELTIC was the only model that was able to predict the two astral arrays radiating 

from the spindle poles during mitosis (Fig. 3A). These subjective visual assessments were systematically 

confirmed by calculating the ΔPCC defined as the signed mean contribution of context to the single cell-

based in silico labeling model, i.e., positive ΔPCC values indicate that the cell context contributed to the 

in silico prediction. Indeed, cell context enhanced the prediction of cells in mitosis for all organelles 

(Fig. 3B, Table S3). The most prominent contribution was measured for microtubules, which is expected 

given the dramatic changes occurring in microtubule organization during cell division. Similarly, 

inclusion of context improved the in silico labeling of cells at the colony edge, most notably for the 

Golgi apparatus and for microtubules (Fig. 3B). Cells with small volumes also showed  improvement in 

most cases, particularly for the endoplasmic reticulum and for the nuclear envelope. Lastly, adding 

context enhanced the in silico prediction of cells in sparse neighborhoods, with the most substantial 

differences observed for the Golgi apparatus and for the nuclear envelope (Fig. 3B). Intriguingly, context 

systematically contributed to the in silico labeling of most organelles, even when considering the entire 

cell population (Fig. 3B, “All”), but this contribution was marginal because the rare populations 

constituted only a small fraction of the dataset. The models were trained on the original datasets without 

enrichment of rare populations, requiring the model to learn from the limited samples available. For 

instance, the endoplasmic reticulum dataset included only 28 mitotic cells out of 697 total training cells, 

with some subcategories, such as early prometaphase, containing as few as 2 cells. 

To elucidate the contribution of each context type to the in silico labeling of rare populations, we 

conducted an ablation study. Specifically, we randomized each context type by shuffling the 

corresponding context values across the single cell population and measured the reduction in the in silico 

labeling with the shuffled context (Table S4). This analysis revealed that several context types were 

contributing to the in silico labeling of cells undergoing mitosis, unsurprisingly with cell stage ranking 

first among them (Fig. S3). The inclusion of the edge context predominantly impacted cells situated at 

the periphery of the colony for the in silico labeling of the endoplasmic reticulum, nuclear envelope and 

the microtubules. Cells with small volumes were primarily influenced by the shape and morphology 

contexts, particularly for the endoplasmic reticulum, Golgi apparatus, nuclear envelope, and actin. 

Intriguingly, the neighbor context had minimal effect on most rare populations. Overall, we conclude 
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that cell context, especially one that associates with a corresponding population, such as cell cycle stage 

for mitotic cells, contributes to in silico labeling by “guiding” representations that adapt to the different 

intracellular organizations associated with rare cell populations. 

 

 

 

Figure 3. Qualitative and quantitative assessment of CELTIC’s contribution to the in silico 

labeling of rare cell populations. (A) In silico labeling visualization of mitotic cells. Each row 

visualizes a different organelle (top-to-bottom): endoplasmic reticulum of a cell in late mitosis, nuclear 

envelope of a cell in late mitosis, microtubules of a cell in the prometaphase/metaphase stage. Left-to-

right: ground truth fluorescence, U-Net replicating (Ounkomol et al. 2018), single cell-based in silico 
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labeling (U-Net), CELTIC, the  absolute pixel-wise difference between CELTIC and the single cell-

based model. Darker regions mark bigger differences. Shown are Z slices that have been selected by an 

expert based on the ground truth full z-stack images. Scale bar = 5μm. (B) Quantification of the 

contribution of context, via CELTIC, to the in silico labeling of six organelles in the rare cell 

populations. Mean and standard deviation of the ΔPCC for each population and for each organelle. The 

entire population (left) for reference. Wilcoxon signed-rank test was used to reject the null hypothesis 

that ΔPCC is distributed around zero: * - p < 0.05, ** - p < 0.01, *** - p < 0.001. Full results are provided 

in Table S3. 
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Predicting spindle axis in mitotic cells enabled by CELTIC  

The performance of an in silico labeling model should be evaluated based on its performance for specific 

application-appropriate downstream analyses, such as organelle localization, counts, and shape  

(LaChance and Cohen 2020; Chen et al. 2023; Elmalam et al. 2024). During mitosis, the spindle axis 

connects the two centrosomes and is a critical determinant of cell division orientation and outcome 

(Yamashita 2009). We decided to focus on the application-appropriate downstream analysis of  

determining the location and orientation of the spindle axis during mitosis from label-free images. We 

applied the single cell-based in silico model for microtubules, without and with the mitotics state context, 

for a set of prometaphase/metaphase cells that had not been seen before by the model. For consistency, 

we selected the middle z-slice from each image stack and resized the images to a standard size. Next, 

we performed a threshold-based segmentation of the in silico labeling predictions and set a line 

connecting the centers of mass of the two main contours in the image as the predicted spindle axis (see 

Methods). We defined two measurements to evaluate the predicted spindle axis: (1) location error - the 

distance between the center of the ground truth spindle axis line and the center of the predicted line 

(ΔC), and (2) orientation error - the angle between these two lines (Δθ) (Fig. 4A). Visual assessment 

indicated that while both models were not able to perfectly reconstruct the microtubules spindle axis, 

CELTIC was able to provide reasonable predictions regarding the spindle location and orientation (Fig. 

4B). Quantification of ΔC and Δθ reported that the spindle axis was predicted by CELTIC with a median 

location error ΔC of 3.8 pixels (0.15-0.27 μm before resizing), and with a median orientation error Δθ 

of 13°. Comparison to the single cell-based model (without context) showed deterioration of over 2 fold 

in the predicted location (Fig. 4C) error and over 1.5 fold in the predicted orientation error (Fig. 4D). To 

confirm that these prediction errors were not achieved by chance we conducted a permutation test where 

we randomly shuffled all single cell predictions and calculated the median Δθ prediction errors across 

the shuffled population. This process was repeated 250,000 times and was used to calculate the statistical 

significance - the fraction of times that the permuted mean errors were smaller or equal to the observed 

(unpermuted) mean error, reaching statistical significance p-value < 2e-5 (Fig. 4E). These results suggest 

that the inclusion of cell context in CELTIC can enhance the in silico labeling of (application-

appropriate) organelle localization patterns that are associated with that context. 
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Figure 4. Application-appropriate downstream analysis: in silico prediction of the spindle axis 

location and orientation. (A) Measurements of the predicted spindle axis. The location error (ΔC) 

denotes the distance between the centers of the predicted (pink) and the ground truth (red) spindle axes. 

The orientation error (Δθ) denotes the angle between the predicted and the ground truth spindle axes. 

(B) Four cells (rows) in the prometaphase/metaphase mitotic state. Columns represent (left-to-right): (i) 

brightfield label-free image; (ii) ground truth fluorescent microtubules image from the z-stack’s middle 

slice; (iii) single cell-based model in silico labeling of microtubules ; (iv) CELTIC in silico labeling of 

microtubules; (v) Threshold-based segmentation of the CELTIC prediction, the spindle axis prediction 

(pink) and ground truth (red). In silico labeling was performed in 3D, while spindle axis prediction and 

segmentation were conducted in 2D. (C-D) Distribution of the location (C) and orientation (D) errors of 

the single cell-based versus CELTIC prediction of the spindle axis. Each data point corresponds to a 

single cell.  (E)  Permutation test: CELTIC’s observed orientation error (red 'X', median ΔC = 13°) and 

the histogram of random shuffling (N=250,000). 
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Context-dependent generative organelle localization with CELTIC  

The CELTIC representation incorporates the label-free image along with the cell context, which  are 

jointly used to make the in silico prediction. This representation where the context can be manually 

manipulated can be used to generate a series of in silico labeling images of the same label-free image 

under varying contexts. To illustrate the potential of this approach, we generated the integrated in silico 

labeling of the actin filaments, the nuclear envelope and the microtubules of a non-dividing cell where 

the actin filaments and the microtubules formed widespread networks throughout the cytoplasm, with a 

solid nuclear envelope surrounding the nucleus (Fig. 5A, top). Upon manipulating the mitotic context, 

for the same label-free image, CELTIC generated an integrated in silico labeling where the actin 

filaments reorganized to form a ring at the cell equator in preparation for cytokinesis, the nuclear 

envelope broke down, and the microtubules reorganized to form the aligned mitotic spindle (Fig. 5A, 

bottom). Repeating the same process of context change and CELTIC generative organelle localization 

transitioning a cell from cell late mitosis to interphase produced an integrated in silico labeling 

resembling the interphase phenotype with dispersed actin filaments and microtubules and a more rigid-

appearing nuclear envelope (Fig. 5B). As another demonstration, we used CELTIC to in silico label the 

endoplasmic reticulum, actin filaments and the microtubules of a cell located at the interior of the colony. 

Manipulating the edge context altered the localization of  the endoplasmic reticulum from around the 

nucleus closer toward the cell’s periphery (Fig 5C, top versus bottom), aligning with observations 

reported in (Viana et al. 2023) . 

To systematically analyze how altering the cell’s context changes the corresponding CELTIC-generated 

image, we manipulated each of the five context types, and calculated the Pearson correlation score 

between the generated image before and after the context alteration for 230 cells derived from 16 FOV 

images from the endoplasmic reticulum dataset (Fig. 5D). Altering the cell stage context made the most 

dramatic change in the generated image space, particularly for the microtubules and the Golgi apparatus. 

Alteration of the  edge context was mapped to changes in the endoplasmic reticulum. Alteration of other 

contexts did not change the corresponding generated images. Given that CELTIC outperforms the single 

cell-based model that does not have access to the cell’s context, these results suggest that CELTIC 

generalizes better for situations where there is no phenotypic difference or for scenarios where it 

recognizes its limited influence.  Altogether, this analysis emphasizes that the CELTIC representation 

learns the cell’s context, supporting its generalization to the rare cell population. The explicit 

representation of cell context also enables guided traversal along the context axis of the same cell, 

overcoming the vast variability between different cells. Analysis of the alteration in cell organization 
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along these context traversals may teach us about the gradual change in integrated cell state along a 

physiological process. 
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Figure 5. In silico labeling generation of variable cellular contexts. (A) In silico labeling of a cell in 

interphase. Top: The cell augmented with a native interphase context. Bottom: The cell augmented with 

a mitotic context. The images display the CELTIC results for the (left to right) actin filaments model 

(red), nuclear envelope model (green), microtubules model (blue), and a multiplexed representation of 

all three organelles together. (B) In silico labeling of a cell in prometaphase/metaphase. Top: The cell 

augmented with a native mitotic context. Bottom: The cell augmented with an interphase context. The 

descriptions of the images are analogous to those in panel A. (C) In silico labeling of a cell located far 

from the colony edge. Top: The cell augmented with a native interior context. Bottom: The cell 

augmented with a colony edge context. The images display the CELTIC results for the (left to right): 

endoplasmic reticulum model (red), actin filaments model (green), microtubules model (blue), and a 

multiplexed representation of all three organelles together. (D) Quantification of changes in CELTIC-

generated images resulting from context alterations in the in silico labeling of six organelles, as predicted 

from images of 250 cells. Pearson Correlation Coefficient (PCC) was calculated between the original 

and altered images. Each cell in the table represents the mean PCC across the analyzed cells for the 

organelle (row) and the context type (column). 
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Discussion 
 

Measuring and interpreting how organelles adjust their internal structure and organization in respect to 

one another under different experimental conditions or during a physiological process is the “holy grail” 

of cell biology. In silico labeling is a promising method to overcome some of the technical hurdles that 

currently prevent us from reaching this ultimate goal. Here, we report that in silico labeling is 

confounded by rare cell contexts due to alterations in the cells optical properties that lead to out-of-

distribution label-free images. CELTIC guides context-dependent representations by incorporating the 

explicit cell context to the in silico labeling model. We show that CELTIC enhances the in silico labeling 

of rare cell populations, especially for organelle localization patterns associated with the corresponding 

context, and highlight its potential for modeling context-transitions through context-dependent 

generative capabilities. Our results emphasize the strong link between the cell’s context and its 

intracellular organization.  

Cell context is a very broad term. It could be practically anything, from intrinsic cell contexts such as 

the ones shown in this study to extrinsic contexts such as the cell type, organelle, perturbations, disease 

state, assay, microscope, fluorescent marker and imaging parameters. The inclusion of context 

descriptors could be used to harmonize datasets from multiple resources to one large dataset. Thus 

context-dependent in silico labeling can be the enabler toward training general in silico labeling 

“foundation models”. Christiansen et al. made the first step in this direction by arguing for the benefit 

of training one model for the in silico labeling of multiple fluorescent channels (Christiansen et al. 2018). 

An exciting possibility is to integrate the cell’s continuous state during the progression of a physiological 

process as context for in silico labeling. For example, using the FUCCI system as rich cell cycle context 

(Sakaue-Sawano et al. 2008) or by computational prediction of the continuous cell state  (Gut et al. 2015; 

Eulenberg et al. 2017; Rappez et al. 2020; Yang et al. 2020; Szkalisity et al. 2021; Zaritsky et al. 2021; 

Stallaert et al. 2022; Shakarchy et al. 2024). Notably, the cell’s mitotic state, periphery location, and 

segmentation were available to us in the AICS dataset used in this study. In “the wild” these cell contexts 

would be computationally extracted from the raw images. 

An alternative approach for incorporating context is through weakly supervised representation-learning, 

with the cell context as the “weak” label. Previous recent studies guided representations of protein 

localization patterns using the protein (Kobayashi et al. 2022; Razdaibiedina et al. 2024) or the 

perturbation (Moshkov et al. 2024) as the weakly supervised label. In principle, cell context can also be 

used as a label for weakly supervised representation learning. CELTIC’s explicit “injection” of the cell 

context to the representations has two major benefits. First, the possibility to control the context to morph 

a specific cell along the context trajectory, while fixing the other factors of cell-cell variability. This 
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generative capacity along a context trajectory has the potential to serve as a hypothesis generation 

method to follow how the different organelles and their spatial inter-organelle dependencies are 

changing as a function of their contexts. The second benefit of explicitly injecting context over weak 

supervision is technical. There are many possible contexts, and training representations to 

simultaneously encode multiple weak context labels is not feasible. CELTIC bypasses this limitation by 

avoiding the technical challenge of learning representations that encode context. Accordingly, the 

explicit context representation enables learning out-of-distribution label-free images from a very small 

set of examples consisting of tens of cells per rare population. One advantage of weak supervision is the 

simpler inference that does not require the weak context label as input. 

Context does not improve in silico labeling for all organelles to the same extent. For example, in silico 

labeling of mitochondria was not improved by much with the inclusion of context indicating that the 

corresponding brightfield patterns used to localize the mitochondria do not depend much on the cell’s 

context. Systematic characterization of what contexts contribute to the in silico labeling of different cell 

populations can be used as a phenotypic signature of these populations. Moreover, screening for which 

contexts contribute the most to the in silico labeling can be used as a method to identify the cell’s context. 

This approach for context prediction is especially relevant for application-appropriate measurements, 

such as predicting the spindle axis, which should be dramatically improved during mitosis due to the 

strong association between intracellular organizational patterns and the context. Thus, the same 

approach can be used to discover unknown patterns that are associated with a specific cell context.  



29 

 

Methods 

 
Data  

We used the Allen Institute for Cell Science WTC-11 hiPSC Single-Cell Image Dataset v1.  From the 

field-of-view (FOV) spinning-disk confocal microscopy section, we used the 16-bit Z-stack images, 

acquired with a 100× objective, with a resolution of 624 × 924 pixels and a pixel scale of 0.108 

micrometers per pixel. Each Z-stack comprised 50–75 slices. Specifically, we used the brightfield 

channel and the EGFP-tagged cellular structure channel, for the following proteins: alpha-tubulin 

(microtubules), beta-actin (actin filaments), lamin B1 (nuclear envelope), sec61B (endoplasmic 

reticulum), STGAL1 (Golgi apparatus), and Tom20 (mitochondria). From the FOV segmentation 

section, we used the cell segmentation channel (channel 1), an unsigned 8-bit single-channel 3D image 

showing cell locations within the FOV. Lastly, we used the 'edge_flag' and 'cell_stage' features from the 

metadata CSV file . 

We selected 80 FOV images for training and validation of all the models in this paper (“SET 1”). The 

images were picked from the list provided in the code repository of (Ounkomol et al. 2018). In cases 

where images from this list were not available in the single cell dataset, we randomly replaced them 

with FOV images with comparable cellular properties, such as cell count, mitotic percentage, and edge 

characteristics. Additionally, we selected 100 FOV images for testing (“SET 2”), based on the same 

criteria. 

In silico labeling replication  

We used the original U-Net model provided by (Ounkomol et al. 2018). For training we used 64 images 

from SET 1 (56 for training, 8 for validation). For testing we used the remaining 16 FOVs of SET 1. We 

followed the original preprocessing steps, which included resizing the z-slices to 244 × 366 pixels and 

normalizing each image to have a mean of 0 and a standard deviation of 1. We report the FOV-based 

replication results in Table S1. 

To analyze cell-level in silico labeling we crop complete single cells from the FOV images of SET 2. 

We resized the segmentation channel to match the size of the FOV images, without smoothing, to ensure 

that the label map's indexes remained consistent. We then applied a binary mask to both the predictions 

and the targets and calculated the Pearson correlation coefficients (PCC) between them, considering 

only the regions with signal (non-zero values in the mask). We categorized the cells into populations 

based on the following criteria: Cell Stage (mitosis vs. interphase) by using the metadata cell_stage field, 
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Edge (interior vs. edge) by using the metadata edge_flag field, and Volume, where small cells were 

those with a volume lower than -1.5 standard deviations from the mean. For neighbor analysis, we 

examined adjacent voxels and classified cells as having few neighbors if the neighbor count was fewer 

than 5 (see Methods/Context Representations below for more details). To calculate the p-value, we used 

the Mann-Whitney U test to compare the small and large populations, with a significance level set at 

0.05 (results in Table S2). 

Single cell models image preprocessing  

We used the FOV cell segmentation label maps to extract individual cells from the FOV images. We 

excluded partially visible cells due to the lack of metadata for these cells. For each internal cell in the 

label map, we created a 3D bounding box based on its minimum and maximum x, y, and z values. We 

then generated binary images where 1 represents the cell area and 0 represents the background, ensuring 

focused isolation of the cellular content. These bounding boxes and masks were applied to both the 

brightfield and EGFP FOV images, resulting in a single-cell dataset with each cell represented in two 

channels: brightfield and EGFP. Pixel intensities of all images were individually normalized to have a 

mean of 0 and a standard deviation of 1 to account for variations in illumination intensity. 

Context Representations  

Cell Stage: the representation was extracted from the single-cell metadata CSV file, where the cell cycle 

stage is indicated as one of six stages: "M0" (interphase), "M1M2" (prophase), "M3" (early 

prometaphase), "M4M5" (prometaphase/metaphase), "M6M7_single," and "M6M7_complete" 

(anaphase/telophase/cytokinesis in two stages). This annotation was generated by a deep learning-based 

classifier and rule-based criteria (Viana et al. 2023). We represented this information numerically as a 

six-column one-hot vector, with each column corresponding to one of the six cell cycle stages . 

Cell Position in the Colony: the representation was extracted from the edge_flag column in the single-

cell metadata CSV file ('true' for edge cells, 'false' for interior cells). We represented this context as a 

single boolean variable . 

Shape and morphology representations: We employed these two sets of features to provide a 

comprehensive description of the cell populations. The shape-based representations offered insights into 

the general dimensions and geometric properties of the cells, allowing for broad classification based on 

size and shape. The morphology-based features, derived from autoencoder representations, enabled us 

to capture more subtle and complex attributes, such as intricate structural patterns, which the geometric 

measurements alone might not fully reveal  . 
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Shape: Using the binary masks of the cells, we calculated the cell height (defined by the minimal and 

maximal z coordinates within the mask), cell volume (the volume enclosed by the mask), and cell width 

(the range of sizes along the x and y axes, combined into a single xy axis). Following min-max scaling 

of these measurements, we applied a k-means classifier to each organelle, determining the optimal 

number of clusters (k=5) by evaluating the relationship between the number of clusters and the within-

cluster sum of squares. Cells were assigned to clusters, represented as one-hot vectors. We also tried 

using the distances to the k-means centroids but found this to be less effective. 

Morphology: We resized the cells’ binary masks to images of size [32, 64, 64] for z, y, and x, 

respectively. An autoencoder was trained on these images, with the encoder consisting of two 3D 

convolution layers (depths 16 and 32), each followed by ReLU activation and max-pooling with kernel 

size 2 and stride 2. The decoder included two 3D transposed convolution layers, with ReLU activation 

for the first and sigmoid activation for the last. The autoencoder was trained for 10 epochs to minimize 

mean squared error (MSE), on the training set of the endoplasmic reticulum organelle . The latent space 

of the autoencoder, shaped as [32, 8, 16, 16], was reshaped into vectors of size 65,536. Principal 

Component Analysis reduced the dimensionality to 5 main components. K-means clustering was then 

performed, determining the optimal number of clusters (k=3). Shape clusters were represented by cluster 

membership, with a binary indicator for cluster belongingness. 

Number of Neighbors: We used the FOV segmentation images to identify neighboring cells by 

examining adjacent voxels in the segmentation image. The final count of unique neighboring cells was 

recorded as the number of neighbors for each cell. These counts were min-max scaled according to the 

minimum and maximum number of neighbors in the organelle training set. 

CELTIC architecture  

We adopted the 4-level U-Net architecture inspired by (Ounkomol et al. 2018), incorporating convolutional 

layers, batch normalization, and ReLU activations. The complete architecture is detailed in Fig. S2. Similar 

to the original model, which was trained on field-of-view images, we employed patching, as even a single 

cell in 3D is too large to fit into the GPU. We used patches of size 32 × 64 × 64 (z, y, x), selected randomly 

from the images. Patches without signal content, due to masking, were discarded. Incorporating additional 

inputs to access a broader context beyond the given input patch has been shown to be important  (Ashesh 

et al. 2022). We assume that in our case, attaching a global context to each patch helps maintain correlations 

and preserve spatial context. 

Our U-Net model integrates DAFT (Wolf et al. 2022), with the bottleneck producing a feature map (FM) 

tensor of size 512 × 2 × 4 × 4, which is input into the DAFT block. The FM undergoes 3D adaptive average 
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pooling, resulting in a single value per feature map. This tensor is concatenated with the 16-length context 

vector and encoded by a fully connected layer with a compression rate factor, which is a hyperparameter 

typically set to 48, followed by a ReLU activation function. A subsequent linear layer decodes the 

representation to twice the original FM size. Half of this decoded representation is activated by a sigmoid 

function and used to scale the FM values, while the other half shifts them. The adjusted FM is then 

propagated through the U-Net's upstream layers. Alternative configurations, where DAFT was applied to 

different or additional layers, were explored but showed inferior results compared to integrating DAFT at 

the U-Net bottleneck layer. 

CELTIC training and test analysis  

To evaluate the contribution of context, we trained and tested models for each organelle dataset, using 

CELTIC (with the DAFT block and context) and U-NET (without them). For training and validation we 

used only cell images from SET 1. For reporting the results, we used SET 2. 

We randomly split SET 1 into training, validation, and test sets with a ratio of 7:1:2. The split was 

performed at the FOV level rather than at the single cell level to ensure that cells from a specific FOV 

are included in only one data split, preventing the models from learning batch effects. The models were 

trained for 60,000 iterations, using mean squared error (MSE) as the loss function, calculated on the 

masked signal area. During the training, MSE was measured on the validation set every 100 iterations. 

To determine the optimal bottleneck size hyperparameter for DAFT, we trained the model using three 

different split seeds of SET 1. We then selected the bottleneck size that maximized the difference 

between CELTIC and U-NET on the validation sets. From these three models, we chose the one that 

best generalized to rare populations in the test sets of SET 1. At the end of this step we obtained six 

model pairs, one pair per organelle, with each pair consisting of a CELTIC and a U-NET model . 

Next, we used the model pairs to predict cell images from SET 2. We calculated the PCC values for 

cells predicted by CELTIC vs. the same cells predicted by U-NET. We calculated the results for five 

populations: one population representing all the cells (“All”), and four rare populations (mitosis, edge, 

small volume, few neighbors). On each population we calculated the delta PCC and the p-value between 

the models.We used the Wilcoxon signed-rank test. A p-value of 0.05 was considered significant. The 

p-values, population sizes and distribution of PCC values across organelles and groups is detailed in 

Table S3. 

All training was conducted on an NVIDIA RTX 2080 GPU using PyTorch. 
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Ablation study  

We assessed the contribution of context representation to the in silico labeling of rare populations by 

permuting the context in CELTIC’s predictions. For each organelle and rare population, the model’s 

original context was shuffled, one context representation at a time. This shuffling was repeated 10 times 

for each representation, using different random seeds. The trained model was then used to make 

predictions on images from SET 2 with permuted context, and the mean Pearson correlation coefficient 

(PCC) across the shuffles was calculated (Table S4, Fig. S3). These results were compared to the mean 

PCC obtained using the original context. To evaluate the statistical significance of the differences 

between the original and shuffled contexts, p-values were calculated, with a paired t-test performed and 

significance set at p < 0.05. 

Spindle prediction  

We used the brightfield images of all mitotic M4M5 stage (prometaphase/metaphase) cells from the 

microtubules SET 2 data, totaling 27 cells. We calculated the predictions of the CELTIC and U-NET  

microtubules model. For segmentation of the predictions, we used the middle z slices of the 3D images, 

and resized them to 128x128 pixels. We eroded the cell mask with a kernel size of 5 to remove any 

residual predictions on the cell's border. We then thresholded the prediction into a binary image by 

masking out values below the 90th percentile. To find the spindle axis, we first identified the contours 

in the segmented image, retaining the largest two. For each contour, we extracted the moments and 

calculated the center of mass, then drew a line connecting these centers. If only one contour was present, 

we drew the longest line that could be feasibly accommodated within the contour. To evaluate metrics 

against the ground truth spindle, we manually annotated the line over the 27 cells. The location error 

(ΔC) was calculated as the distance between the two line midpoints. To calculate the orientation error 

(Δθ) we computed the cosine of the angle between the vectors. The permutation test, to determine the 

significance of Δθ, was achieved by performing the Δθ calculation on 250,000 times random shuffles of 

the ground truth values. 

Using context for image generation  

We used brightfield images from the endoplasmic reticulum test dataset, and our pre trained in silico 

labeling CELTIC models. To generate cell images with varying contexts, we altered the context 

representation of the cell. For example, to generate the images in Fig. 5A, we in silico labeled an 

interphase cell with the actin filaments, nuclear envelope and microtubules CELTIC models. The top 

image is a result of the prediction with the native interphase context. For the bottom result, we 
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manipulated the cell stage representation in the context vector from M0 (mitotic context = ‘100000’) to 

M4M5 (000100). 

For the quantification analysis (Fig. 5D) we used 16 FOV bright field images from the endoplasmic 

reticulum that the models did not see before, with a total of 230 single cells. For each image and 

organelle model, we predicted the in silico labeling using the appropriate context, and then repeated the 

inference by manipulating the context vector for each non-native context type. We measured the Pearson 

correlation coefficient between the native prediction and the generated prediction. 
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Supplementary Information 
 

 

 

 

Fig. S1. Distribution of single cell in silico labeling performance across organelles for rare cell 

populations:  (A) location within a the colony (interior versus edge), (B) volume (medium-low vs. 

small), (C) number of neighbors (standard vs. few).Mann-Whitney U test: * - p < 0.05, ** - p < 0.01, 

*** - p < 0.001. Full results are provided in Table S2. 
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Fig. S2. CELTIC architecture. (A) The U-Net architecture with the CELTIC context embedding 

block (magenta arrow) adapted from Ronneberger et al. (Ronneberger et al. 2015) cite. (B) Context 

Embedding Block operation (magenta rectangle) adapted from (Wolf et al. 2022), where i1 

corresponds to the bottleneck feature maps from the U-Net, and i2 represents the context vector as 

input. Black arrows illustrate the flow between internal components within the block. The actions are 

denoted as follows: f1 - global average pooling; f2 - concatenation; f3 - fully connected layer with 

ReLU activation; f4 - fully connected layer with post separation for scaling and shifting; f5 - 

multiplication of i1 by the scale, followed by sigmoid activation; f6 - addition of the shift to the result 

of f5. 
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Fig. S3. Ablation study showing the impact of different context types on in silico labeling of rare 

cell populations. Each row represents a rare cell population, and each column represents a shuffled 

context type. The bar plots depict the mean Pearson correlation coefficient difference (ΔPCC) between 

shuffled and non-shuffled contexts, broken down by organelle (color-coded according to the legend). 

Subplots enclosed in a black box indicate that the rare population is most affected by the CELTIC cell 

context type relevant to it, for mitosis, edge, and small volumes. 
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Organelle Protein 
Train-Validation-

Test (in number of 
FOVs) 

Iterations 
PCC 

(median) 
PCC 

(mean) 

Endoplasmic-reticulum SEC61B 56-8-16 60,000 0.703 0.709 

Golgi ST6GAL1 56-8-16 60,000 0.225 0.220 

Mitochondria TOMM20 56-8-16 60,000 0.731 0.723 

Nuclear-envelope LMNB1 56-8-16 60,000 0.873 0.872 

Actin-filaments ACTB 56-8-16 60,000 0.774 0.777 

Microtubules TUBA1B 56-8-16 60,000 0.793 0.794 

 

Table S1. Results of replicating the U-Net-based in silico labeling model as reported in (Ounkomol 

et al. 2018). This table provides a row for each organelle dataset used in the study. Columns (left-to-

right): organelle name, the EGFP-tagged protein representing the organelle, the number of field-of-view 

images used for training-validation-test splitting, the number of model iterations, the median Pearson 

correlation coefficient on the test set, and the mean Pearson correlation coefficient on the test set.  
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Protein / 
Organelle 

Tested 
FOVs / 
Cells 

Category Population 
Cell 

Count 
% PCC 

PCC 
Diff. 

p-value Significance 

SEC61B /  
Endoplasmic-

reticulum 

100 / 
1191 

Cell Stage 
Mitosis 52 4.4% 0.534 -

0.142 
7.10E-18 *** 

Interphase 1,139 95.6% 0.676 

Edge 
Edge 33 2.8% 0.660 -

0.010 
1.50E-01   

Interior 1,158 97.2% 0.670 

Volume Small 43 3.6% 0.646 -
0.024 

2.30E-02 * 
Medium-Big 1,148 96.4% 0.670 

Neigbours Few 59 5.0% 0.649 -
0.022 

2.70E-01   
Standard 1,132 95.0% 0.671 

ST6GAL1 /  
Golgi 

100 / 
1132 

Cell Stage Mitosis 46 4.1% 0.092 -
0.147 

1.10E-17 *** 
Interphase 1,086 95.9% 0.239 

Edge Edge 21 1.9% 0.261 
0.028 -   

Interior 1,111 98.1% 0.233 

Volume Small 23 2.0% 0.203 -
0.031 

8.90E-02   
Medium-Big 1,109 98.0% 0.234 

Neigbours Few 59 5.2% 0.208 -
0.027 

2.40E-02 * 
Standard 1,073 94.8% 0.235 

TOMM20 /  
Mitochondria 

100 / 
1299 

Cell Stage Mitosis 70 5.4% 0.642 -
0.084 

6.30E-19 *** 
Interphase 1,229 94.6% 0.726 

Edge Edge 15 1.2% 0.738 
0.016 -   

Interior 1,284 98.8% 0.722 

Volume Small 35 2.7% 0.689 -
0.034 

5.60E-03 ** 
Medium-Big 1,264 97.3% 0.723 

Neigbours Few 48 3.7% 0.703 -
0.019 

1.50E-02 * 
Standard 1,251 96.3% 0.722 

LMNB1 /  
Nuclear-
envelope 

100 / 
1116 

Cell Stage Mitosis 48 4.3% 0.595 -
0.289 

1.30E-27 *** 
Interphase 1,068 95.7% 0.884 

Edge Edge 11 1.0% 0.918 
0.047 -   

Interior 1,105 99.0% 0.871 

Volume Small 22 2.0% 0.820 -
0.053 

1.60E-05 *** 
Medium-Big 1,094 98.0% 0.873 

Neigbours Few 53 4.7% 0.826 -
0.048 

5.70E-04 *** 
Standard 1,063 95.3% 0.874 

ACTB /  
Actin-

filaments 

100 / 
1575 

Cell Stage Mitosis 76 4.8% 0.586 -
0.192 

1.20E-35 *** 
Interphase 1,499 95.2% 0.778 

Edge Edge 32 2.0% 0.699 -
0.071 

6.90E-08 *** 
Interior 1,543 98.0% 0.770 

Volume Small 19 1.2% 0.712 -
0.057 

8.60E-03 ** 
Medium-Big 1,556 98.8% 0.769 

Neigbours Few 49 3.1% 0.729 -
0.041 

1.20E-05 *** 
Standard 1,526 96.9% 0.770 

TUBA1B /  
Microtubules 

100 / 
1309 

Cell Stage Mitosis 65 5.0% 0.448 -
0.341 

1.30E-32 *** 
Interphase 1,244 95.0% 0.789 

Edge Edge 71 5.4% 0.760 -
0.013 

3.00E-04 *** 
Interior 1,238 94.6% 0.773 

Volume Small 30 2.3% 0.740 -
0.033 

8.50E-04 *** 
Medium-Big 1,279 97.7% 0.773 

Neigbours Few 87 6.6% 0.763 -
0.010 

8.70E-03 ** 
Standard 1,222 93.4% 0.773 
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Table S2. In silico labeling accuracy analysis in rare cell populations. Columns (left to right): 

organelle dataset, number of field-of-view images / single cells used in the evaluation, rare cell 

population category, population (with the first row representing the rare population and the second row 

representing all others), cell count in the population, percentage of the total population, Pearson 

correlation coefficient of the in silico labeling prediction for each population using the replicated model 

from (Ounkomol et al. 2018), difference in Pearson correlation coefficient between the rare and non-

rare populations (a negative value indicates inferior accuracy of the rare population), calculated p-value 

between the two populations using the Mann-Whitney U test, and significance levels: p < 0.05 (*), p < 

0.01 (**), and p < 0.001 (**).  
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Organelle 
Rare 

Population 
Sample 

Size 
Mean PCC 
(CELTIC) 

Mean 
PCC (U-

NET) 

Mean  
Δ 

PCC 

Std. 
Δ 

PCC 
p-value Signficance 

Endoplasmic-
reticulum 

All 1,191 0.671 0.665 0.007 0.034 6.62E-17 *** 

Mitosis 52 0.537 0.528 0.008 0.064 7.01E-02   

Edge 33 0.646 0.626 0.020 0.093 2.03E-01   

Small Volume 43 0.643 0.617 0.026 0.039 3.76E-06 *** 

Few Neighbors 59 0.654 0.636 0.018 0.060 6.24E-03 ** 
Golgi All 1,132 0.237 0.212 0.025 0.081 8.55E-26 *** 

Mitosis 46 0.088 0.061 0.027 0.047 2.52E-06 *** 

Edge 21 0.295 0.242 0.054 0.054 1.21E-04 *** 

Small Volume 23 0.215 0.200 0.015 0.096 1.65E-01   

Few Neighbors 59 0.227 0.195 0.032 0.081 2.06E-03 ** 
Mitochondria All 1,299 0.713 0.710 0.003 0.026 3.06E-08 *** 

Mitosis 70 0.643 0.634 0.009 0.022 7.20E-04 *** 

Edge 15 0.716 0.718 
-

0.002 0.022 6.19E-01   

Small Volume 35 0.674 0.668 0.006 0.031 1.67E-01   

Few Neighbors 48 0.691 0.689 0.002 0.029 2.76E-01   
Nuclear-
envelope 

All 1,116 0.875 0.863 0.012 0.027 5.99E-72 *** 

Mitosis 48 0.571 0.534 0.036 0.086 6.16E-03 ** 

Edge 11 0.924 0.911 0.013 0.010 2.44E-03 ** 

Small Volume 22 0.816 0.788 0.027 0.055 2.71E-02 * 

Few Neighbors 53 0.833 0.811 0.022 0.044 3.59E-05 *** 
Actin-
filaments All 1,575 0.786 0.788 

-
0.003 0.023 1.00E+00   

Mitosis 76 0.652 0.641 0.011 0.037 7.70E-03 ** 

Edge 32 0.687 0.688 
-

0.001 0.024 6.74E-01   

Small Volume 19 0.763 0.761 0.003 0.026 5.08E-01   

Few Neighbors 49 0.744 0.744 
-

0.001 0.023 5.24E-01   
Microtubules All 1,309 0.787 0.774 0.013 0.086 2.31E-08 *** 

Mitosis 65 0.523 0.320 0.203 0.307 3.24E-07 *** 

Edge 71 0.757 0.735 0.022 0.042 7.59E-06 *** 

Small Volume 30 0.762 0.765 
-

0.003 0.029 6.94E-01   

Few Neighbors 87 0.771 0.759 0.011 0.045 1.56E-02 * 

Table S3. Comparison of single-cell in silico labeling accuracy between rare populations with 

context (CELTIC) and without context (U-NET). This analysis was conducted on cells extracted from 

100 field-of-view images. Columns (left-to-right): organelle dataset, cell population ('All' indicates the 

entire population, while other entries represent rare populations), cell count in the population, mean 

Pearson correlation coefficient with CELTIC, mean Pearson correlation coefficient with U-NET, mean 

difference (positive values indicate CELTIC's superiority), standard deviation of the difference, 
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calculated p-value between the two models using the Wilcoxon signed-rank test, and significance levels: 

p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***). 
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Organelle 
Rare 

Population 
Sample 

Size 
Shuffled 
Context 

Random 
Shuffles 

Mean 
PCC 

Without 
Shuffle 

Mean 
PCC 
After 

Shuffle 

Δ 
PCC 

p-value Significance 

Endoplasmic-
reticulum 

Mitotic 
Cells 

52 Cell 
Stage 10 0.537 0.526 0.012 9.97E-13 *** 

Edge 10 0.537 0.536 0.001 5.35E-03 ** 

Shape 10 0.537 0.529 0.008 1.33E-05 *** 

Neighbors 10 0.537 0.534 0.003 4.27E-06 *** 
Edge Cells 33 Cell 

Stage 10 0.646 0.646 0.000 7.78E-01   

Edge 10 0.646 0.626 0.020 2.64E-10 *** 

Shape 10 0.646 0.650 

-
0.004 9.99E-01   

Neighbors 10 0.646 0.648 

-
0.002 1.00E+00   

Small 
Volume 
Cells 

43 Cell 
Stage 10 0.643 0.642 0.001 2.71E-02 * 

Edge 10 0.643 0.643 0.000 4.06E-02 * 

Shape 10 0.643 0.624 0.019 6.28E-08 *** 

Neighbors 10 0.643 0.642 0.001 0.00E+00 *** 
Few 
Neighbors 
Cells 

59 Cell 
Stage 10 0.654 0.653 0.001 4.77E-03 ** 

Edge 10 0.654 0.649 0.005 1.55E-05 *** 

Shape 10 0.654 0.647 0.007 2.62E-07 *** 

Neighbors 10 0.654 0.654 0.000 1.72E-01   
Golgi Mitotic 

Cells 
46 Cell 

Stage 10 0.088 0.058 0.030 8.07E-13 *** 

Edge 10 0.088 0.088 0.000   *** 

Shape 10 0.088 0.084 0.004 1.89E-07 *** 

Neighbors 10 0.088 0.088 0.000   *** 
Edge Cells 21 Cell 

Stage 10 0.295 0.292 0.003 9.44E-03 ** 

Edge 10 0.295 0.295 0.000 8.39E-02   

Shape 10 0.295 0.288 0.007 3.65E-03 ** 

Neighbors 10 0.295 0.296 

-
0.001 1.00E+00   

Small 
Volume 
Cells 

23 Cell 
Stage 10 0.215 0.211 0.004 7.14E-03 ** 

Edge 10 0.215 0.215 0.000 6.61E-01   

Shape 10 0.215 0.205 0.010 1.36E-03 ** 

Neighbors 10 0.215 0.215 0.000 9.59E-01   
Few 
Neighbors 
Cells 

59 Cell 
Stage 10 0.227 0.224 0.003 4.47E-03 ** 

Edge 10 0.227 0.227 0.000 8.28E-01   

Shape 10 0.227 0.226 0.002 2.61E-02 * 

Neighbors 10 0.227 0.227 0.000 1.72E-01   
Mitochondria Mitotic 

Cells 
70 Cell 

Stage 10 0.643 0.639 0.005 3.18E-10 *** 

Edge 10 0.643 0.643 0.000   *** 

Shape 10 0.643 0.641 0.002 2.12E-06 *** 

Neighbors 10 0.643 0.643 0.000   *** 
Edge Cells 15 Cell 

Stage 10 0.716 0.716 0.000 1.72E-01   
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Edge 10 0.716 0.714 0.002 0.00E+00 *** 

Shape 10 0.716 0.719 

-
0.003 9.98E-01   

Neighbors 10 0.716 0.716 0.000   *** 
Small 
Volume 
Cells 

35 Cell 
Stage 10 0.674 0.674 0.000 8.39E-02   

Edge 10 0.674 0.674 0.000 1.72E-01   

Shape 10 0.674 0.674 0.000 1.35E-01   

Neighbors 10 0.674 0.674 0.000   *** 
Few 
Neighbors 
Cells 

48 Cell 
Stage 10 0.691 0.691 0.000 8.28E-01   

Edge 10 0.691 0.691 0.000   *** 

Shape 10 0.691 0.692 

-
0.001 9.93E-01   

Neighbors 10 0.691 0.691 0.000   *** 
Nuclear-
envelope 

Mitotic 
Cells 

48 Cell 
Stage 10 0.571 0.497 0.074 5.38E-12 *** 

Edge 10 0.571 0.571 0.000 5.00E-01   

Shape 10 0.571 0.570 0.001 2.81E-01   

Neighbors 10 0.571 0.570 0.001 1.09E-01   
Edge Cells 11 Cell 

Stage 10 0.924 0.921 0.003 2.61E-02 * 

Edge 10 0.924 0.915 0.009 0.00E+00 *** 

Shape 10 0.924 0.922 0.003 2.24E-05 *** 

Neighbors 10 0.924 0.924 0.000 9.82E-01   
Small 
Volume 
Cells 

22 Cell 
Stage 10 0.816 0.812 0.004 5.33E-02   

Edge 10 0.816 0.815 0.001 1.30E-01   

Shape 10 0.816 0.801 0.015 8.21E-08 *** 

Neighbors 10 0.816 0.815 0.002 4.27E-06 *** 
Few 
Neighbors 
Cells 

53 Cell 
Stage 10 0.833 0.822 0.011 2.97E-06 *** 

Edge 10 0.833 0.831 0.002 0.00E+00 *** 

Shape 10 0.833 0.831 0.002 2.50E-05 *** 

Neighbors 10 0.833 0.831 0.002 1.40E-07 *** 
Actin-
filaments 

Mitotic 
Cells 

76 Cell 
Stage 10 0.652 0.607 0.046 8.21E-16 *** 

Edge 10 0.652 0.652 0.000 8.39E-02   

Shape 10 0.652 0.647 0.005 1.26E-03 ** 

Neighbors 10 0.652 0.652 0.000 8.28E-01   
Edge Cells 32 Cell 

Stage 10 0.687 0.685 0.002 3.06E-02 * 

Edge 10 0.687 0.696 

-
0.009 1.00E+00   

Shape 10 0.687 0.685 0.002 1.36E-02 * 

Neighbors 10 0.687 0.687 0.000 9.82E-01   
Small 
Volume 
Cells 

19 Cell 
Stage 10 0.763 0.759 0.004 1.71E-02 * 

Edge 10 0.763 0.763 0.001 8.86E-02   

Shape 10 0.763 0.753 0.010 4.39E-05 *** 

Neighbors 10 0.763 0.763 0.000 9.03E-01   
Few 
Neighbors 
Cells 

49 Cell 
Stage 10 0.744 0.742 0.002 4.44E-04 *** 

Edge 10 0.744 0.747 

-
0.003 1.00E+00   

Shape 10 0.744 0.739 0.005 5.49E-06 *** 

Neighbors 10 0.744 0.745 

-
0.001 9.98E-01   

Microtubules Mitotic 
Cells 

65 Cell 
Stage 10 0.523 -0.072 0.595 8.32E-16 *** 
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Edge 10 0.523 0.521 0.002 9.33E-02   

Shape 10 0.523 0.493 0.030 2.03E-03 ** 

Neighbors 10 0.523 0.522 0.001 1.89E-03 ** 
Edge Cells 71 Cell 

Stage 10 0.757 0.729 0.028 3.00E-04 *** 

Edge 10 0.757 0.709 0.048 1.22E-13 *** 

Shape 10 0.757 0.755 0.002 3.10E-04 *** 

Neighbors 10 0.757 0.757 0.000   *** 
Small 
Volume 
Cells 

30 Cell 
Stage 10 0.762 0.750 0.012 2.02E-02 * 

Edge 10 0.762 0.759 0.003 3.13E-03 ** 

Shape 10 0.762 0.756 0.006 3.71E-05 *** 

Neighbors 10 0.762 0.762 0.000   *** 
Few 
Neighbors 
Cells 

87 Cell 
Stage 10 0.771 0.750 0.021 1.47E-05 *** 

Edge 10 0.771 0.750 0.021 7.13E-14 *** 

Shape 10 0.771 0.767 0.004 9.61E-06 *** 

Neighbors 10 0.771 0.770 0.001 0.00E+00 *** 

Table S4. Ablation study on the contribution of each context type to in silico labeling of rare 

populations. Columns (left-to-right): organelle dataset, rare population category, the number of cells in 

the rare population, the part of the context type from the context input vector that has been shuffled, the 

number of random shuffles performed, mean Pearson correlation coefficient without shuffling, mean 

Pearson correlation coefficient with shuffling, difference between non-shuffled and shuffled results 

(positive values indicate that shuffling deteriorated the in silico labeling), calculated p-value between 

shuffled and non-shuffled using the t-test, and significance levels: p < 0.05 (*), p < 0.01 (**), and p < 

0.001 (***). 
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 תקציר 
 

לשנות את ההבנה שלנו לגבי    יכולפלואורסנציה של אברונים מתוך תמונות מיקרוסקופיה לא מתוייגות  אין סיליקו של  חיזוי  

בארגון   שינויים  זאת,  עם  משולבות.  מורכבות  כמערכות  תהליכים    התאתאים  להוביל    עשוייםביולוגיים  ושיבושים  במהלך 

כי שילוב הקשרים הביולוגיים המשמעותיים של התאים, חיזוי.  ה   בביצועיולפגוע    הלא מתוייגותלשינויים בתמונות   הדגמנו 

ניתוחים נוספים של אוכלוסיות תאים ביצוע של  חיזוי ואיפשר  השיפר את   "סלטיק",  באמצעות מודל תלוי הקשר שאנו מכנים

ותאים הממוקמים בקצה המושבה. תוצאות אלו מצביעות על קשר בין הקשר   החלוק, כגון תאים העוברים  התפלגותמחוץ לש

אפשר   ,הקשרבתאים בודדים העוברים שינוי    לש  תגנרטיבי  לביצוע תמורהבסלטיק  תאי. השימוש  -ארגון התוךבין ההתאים ל

תאים. הכללת ההקשר השונות בין  ה של השינויים ההדרגתיים בארגון התאי בין אברונים שונים, תוך התגברות על    איפיון משולב

 .סיליקון נתונים, ולסלול את הדרך למודלי יסוד כלליים לתיוג אי בסיסילהביא להרמוניזציה של  יכולהבאופן מפורש 
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