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Machine learning inference of continuous single-cell
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Abstract

Cells modify their internal organization during continuous state
transitions, supporting functions from cell division to differentia-
tion. However, tools to measure dynamic physiological states of
individual transitioning cells are lacking. We combined live-cell
imaging and machine learning to monitor ERK1/2-inhibited primary
murine skeletal muscle precursor cells, that transition rapidly and
robustly from proliferating myoblasts to post-mitotic myocytes and
then fuse, forming multinucleated myotubes. Our models, trained
using motility or actin intensity features from single-cell tracking
data, effectively tracked real-time continuous differentiation,
revealing that differentiation occurs 7.5–14.5 h post induction, fol-
lowed by fusion ~3 h later. Co-inhibition of ERK1/2 and p38 led to
differentiation without fusion. Our model inferred co-inhibition
leads to terminal differentiation, indicating that p38 is specifically
required for transitioning from terminal differentiation to fusion.
Our model also predicted that co-inhibition leads to changes in
actin dynamics. Mass spectrometry supported these in silico pre-
dictions and suggested novel fusion and maturation regulators
downstream of differentiation. Collectively, this approach can be
adapted to various biological processes to uncover novel links
between dynamic single-cell states and their functional outcomes.
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Introduction

Single-cell transitions via dynamic changes in protein expression,
intracellular organization, morphology, and function, drive many
important biological processes, such as the progression through the

phases of the cell cycle, cellular differentiation, the transition from
an immotile to a motile state, or from a living to an apoptotic state.
Aberrant cell-state transitions lead to various diseases, including
cancer and neuromuscular disorders. As such, single-cell state
transitions play an inherent role in physiological processes such as
embryonic development, tissue regeneration, and in various
pathologies.

Obtaining a holistic mechanistic understanding of these
processes relies on the ability to continuously measure the
physiological state of a cell through time. However, technical
limitations, such as the number of live fluorescent state transition
reporters that can be simultaneously imaged, hinder the elucidation
of cell-state transitions as continuous processes. Moreover, state
markers that could provide a continuous description are unknown
for many biological processes. Consequently, we are currently
limited to studying discrete cell states with missing intermediate
states, which are often critical (Stumpf et al, 2017; Szkalisity et al,
2021).

Attempts to quantitatively follow cell-state dynamics have
focused on the computational construction of “pseudo-time”
trajectories from the integration of fixed cell images (Eulenberg
et al, 2017; Gut et al, 2015; Rappez et al, 2020; Stallaert et al, 2022;
Szkalisity et al, 2021; Yang et al, 2020). However, the capacity to
identify single-cell trajectories that deviate from the most common
progression, is limited in this approach, due to heterogeneity
(Schroeder, 2011). Live-cell imaging offers a solution to this
challenge by enabling dynamic monitoring and extraction of
temporal information at the single-cell resolution, with the caveat
that unsupervised modeling may consider extrinsic factors that are
unrelated to the state transition, which may confound proper
modeling of the continuous process (Copperman et al, 2021; Wang
et al, 2022; Wu et al, 2022).

The formation of multinucleated muscle fibers is an essential
state transition for vertebrate muscle development and regenera-
tion. Following injury or growth stimuli, quiescent muscle
progenitors called Satellite cells become activated to augment the
muscle. At the onset of this process, activated satellite cells
(myoblasts) express myogenic regulatory factors such as MyoD and
proliferate to generate the myogenic progenitors needed for muscle
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regeneration (Bischoff, 1986; Hurme and Kalimo, 1992; Schmidt
et al, 2019). Next, myoblasts upregulate the expression of factors
such as Myogenin (MyoG) to exit the cell cycle and initiate
terminal differentiation (Hernández-Hernández et al, 2017; Lepper
et al, 2011; Singh and Dilworth, 2013). Myoblasts initially
differentiate into elongated fusion-competent myocytes that
migrate, adhere, and fuse with the regenerating muscle fibers
(Abmayr and Pavlath, 2012). Newly formed myofibers are
characterized by the expression of myosin heavy chain (MyHC;
(Bentzinger et al, 2012; Lepper et al, 2011; Yin et al, 2013).

Although significant progress has been made in understanding
muscle development, myoblast differentiation and fusion, remain
incompletely understood at the molecular and cellular levels owing
to several technical challenges. First, myoblasts differentiation and
fusion are complex heterogeneous events, confounding systematic
investigation. Second, while proliferating and terminally differ-
entiated cells are relatively easy to distinguish morphologically,
there are no markers for intermediate stages of differentiation or
means for correlating between differentiation state and specific
markers or functions such as motility, morphology, or signaling.

In this study, we combined live-cell imaging with supervised
machine learning to quantitatively monitor the differentiation state
of individual skeletal muscle precursor cells as they differentiate
and fuse to form multinucleated muscle fibers ex vivo. Leveraging
single-cell trajectories from time-series data, we trained machine-
learning models to evaluate the differentiation state of these cells.
Specifically, differentiation was initiated by pharmacologically
inhibiting extracellular signal-regulated kinases (ERK1/2), leading
to differentiation and myotube formation within 18–24 h (Eigler
et al, 2021). Our models, which were trained using cell motility
and/or actin intensity time-series-derived features, distinguished
between proliferating myoblasts and terminally differentiated
myocytes. We hypothesized that the models’ score can serve as a
continuous readout for the cells’ differentiation state and proceeded
to validate this hypothesis and explore its potential for uncovering
novel biological insights. We found that the average differentiation
score maintained a steady increase between 7.5 and 14.5 h post
induction, mirroring the continuous state transition from post-
mitotic undifferentiated myoblasts to terminally differentiated
myocytes. In addition, the predicted differentiation state at the
single-cell level correlated with the time of fusion, suggesting that
differentiation and fusion are sequential and coordinated yet
distinct processes.

Building on this foundation, we employed a combined
pharmacological approach, inhibiting both ERK1/2 and p38. This
led to an apparent accumulation of terminally differentiated, yet
unfused cells. Our model deduced that these cells have transitioned
to terminal differentiation and implied that co-inhibition leads to
changes in actin dynamics. This inference by our model was
experimentally validated using both immunofluorescence and mass
spectrometry. Mass spectrometry also revealed a group of proteins
significantly downregulated in co-inhibited unfused cells compared
to those differentiated by ERK1/2 inhibition. Notably, the
expression of the fusion-specific protein, Myomixer (Zhang et al,
2017; Quinn et al, 2017; Bi et al, 2017) was abolished in co-
inhibited cells. In addition, several actin regulators were upregu-
lated in ERK1/2 inhibited compared to cell where both ERK1/2 and
p38 were inhibited, confirming our model’s prediction regarding

alteration in the actin machinery. Our findings demonstrate the
potential to mechanistically uncouple differentiation from fusion,
emphasizing the pivotal role of p38 in orchestrating the transition
from differentiation to fusion, and revealing potential novel
regulators of the late differentiation and fusion. Collectively, our
findings demonstrate a method to quantify cellular state transitions
that can be adapted to other continuous processes.

Results

Differentiation correlates with reduced motility and
increased actin intensity

We previously established that ERK1/2 inhibition induced robust,
faster, and less temporally variable differentiation and fusion of
primary myoblasts isolated from chick and mice, leading to the
rapid formation of myotubes ex vivo within 24 h post induction
(Eigler et al, 2021). Immunofluorescence staining of the differ-
entiation markers MyoG and MyHC at different time points in
cultures treated with the ERK1/2 inhibitor SCH 772984 (ERKi,
1 μM) or with DMSO as control (Morris et al, 2013) show that
differentiation into fusion-competent myocytes is accompanied by
the upregulation of MyoG, which initiates terminal differentiation
(Figs. 1A and EV1 and EV2). MyHC expression begins 16 h post
induction and peaks in the multinucleated myotubes at 24 h
(Figs. 1A and EV2). The number of MyoG-expressing cells
increases over time, stabilizing at 14 h post induction (Figs. 1B
and EV1 and EV2).

To characterize the dynamic behavior of differentiating
myoblasts, we isolated primary myoblasts from mice co-
expressing the nuclear marker tdTomato fused to a nuclear
localization signal (tDTomato-NLS) (Prigge et al, 2013) and the
F-actin marker LifeAct-EGFP (Riedl et al, 2010; Fig. 1C). Actin
governs a range of processes during differentiation, from cell
motility, elongation, and alignment to fusion and fibrillogenesis,
ultimately leading to sarcomere formation post-fusion and the
subsequent maturation of myotubes into myofibers (Rubinstein
et al, 1976; Otey et al, 1988; Nowak et al, 2009; Luo et al, 2022).

To collect dynamic information on the continuous transition
from proliferation to terminal differentiation we performed time-
lapse widefield microscopy of large fields of view each containing
~3000 cells (Fig. 1C; Movie EV1). Cultures were imaged for 23 h,
starting 1.5 h after ERKi or DMSO (control) treatment. We
observed that differentiation was accompanied by a decrease in
cell motility, consistent with previous studies showing that
myocytes are less motile than myoblasts ex vivo (Powell, 1973;
Griffin et al, 2010) (Fig. 1D; Movie EV1). The regulated reduction
in cellular motility is beneficial for enhancing the cell–cell
interactions that would initiate differentiation and subsequently
promote fusion (Krauss et al, 2005; Buggenthin et al, 2017; Nowak
et al, 2009; Luo et al, 2022). Similarly, we observed an increase in
the fluorescence intensity of the F-actin marker most likely
corresponding to the expression of muscle-specific actin isoforms
(Fig. 1C,E). Cumulatively, these experiments demonstrate that the
transition of myoblasts from the proliferative to the terminally
differentiated state is accompanied by dynamic changes in motility
and actin intensity.

Molecular Systems Biology Amit Shakarchy et al

2 Molecular Systems Biology © The Author(s)

D
ow

nloaded from
 https://w

w
w

.em
bopress.org on January 23, 2024 from

 IP 192.76.146.22.



Machine learning applied to time-series data generates
quantitative single-cell differentiation trajectories

Following the association between differentiation and the popula-
tion scale changes in actin intensity and motility, we hypothesized

that the information encoded in single-cell migration trajectories
and actin dynamics might be sufficient to computationally estimate
a continuous score reflecting a myoblast’s gradual transition from
an undifferentiated proliferative state to a terminally differentiated
fusion-competent state. To test this hypothesis, we took a machine-
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learning approach: (1) extracting features from the motility/actin
time series, (2) training machine-learning classification models (aka
classifiers) to discriminate between the undifferentiated and
differentiated states, and (3) using the confidence of these models
as a quantitative measurement for cell state.

The first step in designing our machine-learning model was
determining which cells and time frame can be considered as
undifferentiated or differentiated. Myocytes must differentiate to
become fusion-competent (Abmayr and Pavlath, 2012). Hence, we
defined the cultures as differentiated for classification 2.5 h before
the first fusion event was observed in the field of view.
Undifferentiated cells were defined from the population grown in
proliferation medium in the presence of DMSO, which continue to
proliferate and remain undifferentiated, except a small fraction that
begins to differentiate stochastically toward the end of the
experiment due to the increase in cell density (Eigler et al, 2021).
To enable continuous scoring along single-cell differentiation
trajectories, we performed semi-manual single-cell tracking, where
each trajectory was manually verified and corrected when necessary
(Movie EV2). Single-cell analysis confirmed our population-based
results that differentiation was accompanied by a decrease in cell
motility and an increase in the F-actin marker’s fluorescence
intensity (Appendix Fig. S1). We partitioned trajectories of
undifferentiated and differentiated myoblasts to overlapping
temporal segments of 2.5 h each, for an overall 16,636 undiffer-
entiated and 47,819 differentiated temporal segments, extracted
from 310 and 538 cells correspondingly, that were used for model
training (Fig. 2A, top). From each temporal segment, we extracted
the corresponding single-cell motility (dx/dt, dy/dt) and actin
intensity time series. Single-cell motility/actin time-series features
were extracted using the Python package “Time Series FeatuRe
Extraction on the basis of Scalable Hypothesis tests” (tsfresh) that
derives properties such as temporal peaks, descriptive statistics
(e.g., mean, standard deviation) and autocorrelations (Christ et al,
2018). The extracted single-cell feature vectors and their corre-
sponding undifferentiated/differentiated labels were used to train
random forest classifiers (Breiman, 2001), which surpassed other
machine-learning algorithms (Appendix Fig. S2). The entire
process is depicted in Fig. 2A and detailed in “Methods”.

We applied the trained motility and actin classifiers on single-
cell trajectories from an experiment that was not used for training
and attained a continuous quantification following the differentia-
tion process by using overlapping temporal segments. At the
population level, the single-cell-state classification performance
gradually increased from an area under the receiver operating
characteristic (ROC) curve (AUC) of ~0.6 to ~0.85 at 7.5–14.5 h
from experimental onset (Fig. 2B,C). A classifier trained on features
derived from both motility and actin time series surpassed each of
the motility/actin classifiers, suggesting that motility and actin
dynamics contain complementary information regarding the cells’

state (Fig. EV3A–C). The AUC values of all models were well
beyond the random value of 0.5, indicating that our classifiers can
discriminate between undifferentiated and differentiated cells at the
population level before appreciable cell morphological changes
occur.

Next, we wondered whether we can use these classifiers to
predict the differentiation state of a single cell. For a given temporal
segment of a given cell, the classifier outputs a “confidence score”
(i.e., differentiation score) that reflects the model’s certainty in its
prediction. Low differentiation scores indicate that the cells are
predicted as undifferentiated, while high scores indicate predicted
differentiation. To interpret what temporal features were the most
important for the model’s prediction, we applied SHapley Additive
exPlanations (SHAP) (Lundberg and Lee, 2017) and used random
forest’s feature importance algorithms (Breiman, 2001). Both
interpretability methods highlighted temporal features related to
high variance of acceleration rate or high complexity of actin
intensity time series as dominant features driving the models’
prediction (Appendix Fig. S3). We hypothesized that the differ-
entiation score could be used as a continuous readout for the cell
state. At the critical time frame of 7.5–14.5 h, at the population
level, the differentiation scores of ERKi-treated cells gradually
increased for the motility (Fig. 2D), the actin-based (Fig. 2E), and
the combined (Fig. EV3D,E) models while maintaining low scores
for experiments of DMSO-treated cells. For the rest of the
manuscript, we focused on analyzing the motility- and actin-
based models, because showing that each of two independent
models trained with different temporal readouts (motility, actin)
can quantitatively monitor the cell differentiation process, and thus
strengthening our goal of evaluating whether the confidence score
of a classifier trained for a binary classification task can be used to
continuously measure a biological process that evolves over time.

We conducted a single-cell analysis by measuring the Spearman
correlation between single-cell differentiation score and time at the
critical time interval of 7.5–14.5 h when differentiation occurs. This
analysis indicated that most cells underwent a monotonic increase
in differentiation scores over time (Fig. 2F). A similar gradual
increase in differentiation score at 7.5–14.5 was observed when
flipping the experiments used for training and testing (Appendix
Fig. S4), the differentiation score was not sensitive to the size of the
temporal segment (Appendix Fig. S5), nor to the window size used
to measure actin (Appendix Fig. S6), and was consistent across
multiple independent trainings (Appendix Fig. S7). Visualizing
single-cell trajectories showed that most trajectories followed a
gradual increase in their differentiation scores (Fig. 2G). Measuring
the distribution of the per-cell differentiation scores’ temporal
derivative (Appendix Fig. S8A,B), their integration over time
(Appendix Fig. S8C–F), the predicted onset (Appendix Fig. S9), and
the predicted duration (Fig. 2H) of the differentiation process,
suggested that the progression in single-cell differentiation is highly

Figure 1. Myoblast differentiation ex vivo leads to dynamic changes in motility and actin intensity.

(A) Overlay images of primary myoblasts fixed at different time points after ERK inhibition and stained for MyoG (red), MyHC (green), and the nuclei (Hoechst, blue).
Magnification ×5. Scale bar: 100 μm. (B) Percentage of MyoG-positive cells in differentiating cultures (ERKi, red) and proliferating controls (DMSO, black) over time. The
error bar represents the standard deviation (SD) of the mean (n >50,000 cells per condition). (C) Overlay image of primary myoblasts expressing the nuclear marker
tDTomatto-NLS (magenta) and the actin marker LifeAct-EGFP (cyan) 23h after ERKi treatment. Magnification ×10. Scale bars 100 µm. (see Movie EV1). (D) Mean (line)
and standard deviation (shade) of single-cell speed over time during differentiation (ERKi; ~3000 cells). (E) Mean (line) and standard deviation (shade) of actin intensity
over time of an entire field of view of differentiating cells (ERKi; “Methods”).
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heterogeneous (Fig. 2H). These results suggest a heterogeneous
gradual transition from an undifferentiated to a differentiated state
within a typical time frame.

The motility- and actin-based classifiers’ predictions were
mostly consistent at their single-cell predictions, showing high
correlation beyond 0.5 for 62% of cells, and negative correlation for
less than 4%, and providing further support that both models
measure the continuous state transition (Appendix Fig. S10A,B).
Analysis of cells sub-groups partitioned according to the agreement
between the motility and actin models, showed that lower
agreement between the classifiers was associated with lower
monotonicity of the differentiation scores of both models
(Appendix Fig. S10C). In most cases of disagreement between the
motility and actin models, we noticed a deviation in the actin-based
model when the cell entered a crowded region and/or crawled
below other cells (Appendix Fig. S11). High agreement between the
two models was associated with the single cells’ motility
persistence, the ratio between the direct translation (i.e., distance
from start to end), and the overall distance traveled (Appendix
Fig. S10C). Qualitative and quantitative association between single
cells’ motility persistence and motility-based (but not actin-based)
differentiation score identified persistent motility as a functional
marker for the intermediate states of myoblast differentiation
(Fig. EV4). The lack of association between the actin model and
persistence suggests that the actin model encodes different dynamic
properties that are linked to the differentiation. Moreover, this lack
of association highlights the potential to use deviations between
these models to discover mechanisms that uncouple the link
between motility, actin dynamics, and myoblast differentiation.
Altogether, our data suggest that machine learning can transform
motility and actin dynamics to a quantitative readout characteriz-
ing the myoblast differentiation process at single-cell resolution
describing a continuous myoblast state transition from an
undifferentiated to the terminally differentiated states at
7.5–14.5 h post induction.

Models that discriminate between undifferentiated and
differentiated states are not sufficient for the
quantitative characterization of the continuous
differentiation processes

Using the simplest readouts to quantify and delineate different
biological conditions/states is always preferred because it provides

more direct insight regarding the underlying mechanisms. Is it
possible that our approach is overly complicated and exceeds what
is required to quantitatively describe the differentiation process?
Are straight-forward single-cell measurements sufficient to dis-
criminate between undifferentiated and differentiated cells and
follow the differentiation process? To test this possibility, we
evaluated the discriminative performance of single-cell properties
that are expected to deviate between the undifferentiated and
differentiated cells. These included cell speed, actin intensity, the
temporal derivative of actin intensity, migration persistence, and
local density. The local density dramatically increased over time for
cells grown in proliferation medium due to continued proliferation
throughout the experiment (Fig. 3A). The mean speed and actin
intensity in proliferating cultures slightly decreased and increased
correspondingly over time, perhaps due to the increased density
(Fig. 3B,C), and the mean temporal derivative of actin intensity
fluctuated around zero for both differentiating and proliferating
cells (Fig. 3D). Persistent migration of proliferating cells was lower
compared to differentiating cells without a clear trend over time
(Fig. 3E). Each of these four discriminative readouts, as well as their
integration, could be generalized across experiments as demon-
strated by using each feature to train a machine-learning model and
applying this model to discriminate between the two experimental
conditions in an independent experiment (Fig. 3F).

The model trained with the local density and the model trained
with all four features surpassed the discrimination performance of
the time-series motility and actin models (also reported in
Fig. 2B,C). However, discrimination does not necessarily imply
that these readouts can be used to quantitatively describe the
differentiation process. Indeed, the differentiation score of each of
these classifiers could not capture the differentiation process as
measured by single-cell monotonic increase at the critical
differentiation time interval of 7.5–14.5 h. The single-cell correla-
tions between the differentiation score and time were low for all the
single-feature classifiers, as well as for the integrated classifier
(Fig. 3G). This is in contrast to our classifiers that generalized to
effectively quantify the differentiation process leading to a higher
correlation between the differentiation score and time (Fig. 3G—
motility, actin intensity, same data as in Fig. 2G). A plausible
explanation for why these effective discriminating models could not
capture the continuous differentiation process is that the dis-
criminating features captured properties attributed to the undiffer-
entiated state. For example, the increased local cell density of

Figure 2. Inference of single-cell differentiation trajectories by machine learning applied to actin/motility dynamics.

(A) Training Random Forest classifiers to predict single cells’ differentiation state—cartoon. Left: single-cell motility/actin time series are partitioned into temporal
segments of 2.5 h each. Positive labels were assigned to the ERKi-treated cells’ segment (top, orange) starting 2.5 h before the first fusion event (orange star on the dashed
timeline). Negative labels were assigned to all segments of DMSO-treated cells (blue). Right: features extracted from the positive (orange) and negative (blue) time series
(top) were used to train classification models. Two models, one based on motility and the other on actin intensity, were trained based on time series extracted from the
single-cell trajectories. (B, C) Classification performance. Area under the receiver operating characteristic (ROC) curve (AUC) over time for classifiers trained with motility
(B) and actin intensity (C) time series. The AUC was calculated for 789 cells from an independent experiment. The classification performance of a random model (AUC =
0.5) is marked with a dashed horizontal line. (D, E) Mean (solid line) and standard deviation (shade) of the differentiation score over time of ERKi (orange) and DMSO
(blue) treated cells using the motility (D) and the actin intensity (E) classifiers (ERK: 575 cells; DMSO: 103 cells). The analysis for the entire experiment is shown at
(Appendix Fig. S17). (F) Distribution of single-cell Spearman correlation between the classifier’s score and time, calculated for motility (orange) and actin (red) classifiers
(N= 575 cells). Median correlation coefficient values were 0.55 (motility) and 0.7 (actin). In total, 66.1% (motility) and 73.4% (actin) of the cells showed a significant
correlation (P value < 0.05), as assessed by Spearman’s rank-order correlation test. (G) Representative single cells differentiation trajectories inferred by the motility (top)
and the actin (bottom) classifiers. Trajectories are colored according to the Spearman correlation between their corresponding differentiation score and time. (H)
Distribution of the single cell predicted duration of the differentiation process, as measured by the motility (yellow) and actin intensity (red) classifiers’ prediction: the time
passed between a stable low threshold of 0.2–0.3 and a high stable threshold of 0.7–0.8 (full details in “Methods”). The median predicted duration of the differentiation
process was 3.3 (motility) and 4.5 (actin intensity) hours (N= 575 cells).
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proliferating cells can be used to effectively discriminate between
the two populations but does not provide any information
regarding the progression through differentiation. Indeed, training
models that included temporal features extracted from single-cell
local density dynamics showed the same or deteriorated correlation
between the differentiation score and time compared to models that
were not trained with local density (Appendix Fig. S12). Motility
persistence, which was the most monotonic among the single
feature, and was earlier identified to be associated with differentia-
tion (Fig. EV4), was still far behind the integrated models in terms
of monotonicity, suggesting that there is further discriminative
information beyond persistence in the cells’ trajectories. These
results indicate that effective discrimination between the discrete
extreme states is insufficient for the quantitative characterization of
continuous state transitions. Specifically, using machine learning
for quantitative characterization requires extracting features that
can capture the state transition and avoiding features that may
confound the quantitative characterization of the process (e.g.,
avoiding local cell density in characterizing the differentiation
process). In our case, and in agreement with other studies
(Copperman et al, 2021; Wang et al, 2020; Wu et al, 2022),
integration of multiple dynamic features encoding the temporal
changes were necessary to continuously measure a biological
process.

The transition from terminal differentiation to fusion is
controlled by p38

We next aimed at harnessing our single myoblasts continuous
differentiation scores to investigate the relationship between cell
differentiation and fusion. We manually annotated the fusion time
of 68 myoblasts that fused to 6 myofibers (Fig. 4A) and used the
continuous differentiation score to determine an estimated time of
the terminal differentiation state. Both the distributions of the
single cells’ terminal differentiation and fusion times followed a
normal-like distribution, where the variability in the predicted
differentiation time was higher than that of fusion time (Fig. 4B).
The time duration between terminal differentiation and fusion also
followed a normal-like distribution, indicating a typical duration of
~3 h between terminal differentiation and fusion at the population
scale (Fig. 4C). The mean of a ~3 h gap between predicted terminal
differentiation and fusion is not trivially derived from the definition
of differentiation timing during training because (1) the differ-
entiation time at training was defined as 2.5 h before the first fusion
event, and (2) the heterogeneity in fusion timing spans over ~10 h
(Fig. 4B). These results suggest that cells undergo fusion within a
typical time interval from their terminal differentiation. This

coupling was validated by measuring a correlation between single-
cell differentiation and fusion times (Fig. 4D) and was not sensitive
to the threshold used to determine the terminal differentiation time
(Appendix Fig. S13). These results suggest that myoblasts must
reach a differentiation checkpoint before fusion can proceed.

Previous studies have shown that co-inhibition of p38, a family
of MAP kinases that play a critical role in the initiation of the
differentiation program, together with a promyogenic factor,
overcomes the early block in differentiation but not the later
impairment of muscle cell fusion imposed by the p38 inhibitor,
leading to differentiated unfused cells (Gardner et al, 2015).
Following this logic, we treated primary myoblasts with the
promyogenic ERKi and the p38 inhibitor BIRB 796 (p38i; 5 µM)
and performed primary myoblasts live imaging experiments. There
was little appreciable difference between cells treated with p38i and
controls treated with DMSO, consistent with previous studies
showing that p38i maintains myoblasts in a proliferative undiffer-
entiated state (Zetser et al, 1999). Myoblasts co-treated with ERKi
and p38i appeared differentiated but failed to fuse, leading to the
complete absence of multinucleated myofibers, reinforcing the
notion that p38 is essential for a transition from differentiation to
fusion and maturation (Fig. 5A,B). Immunofluorescence staining
validated that the fraction of MyoG-positive cells remained low for
p38i-treated cells and increased in cultures co-treated with p38i and
ERKi, indicating that co-inhibition of p38 and ERK1/2 leads to
bona fide differentiation (Figs. 5C and EV2; Movie EV3). More-
over, cells started fusing once the p38 inhibitor was washed out,
indicating that they were stalled at a “ready to fuse” state
(Fig. EV5).

However, it was not clear whether the differentiation process
was altered with respect to ERKi-treated cells. Thus, we
quantitatively described the differentiation process of cells co-
treated with p38i and ERKi by applying our motility and actin
models trained with proliferating and differentiating cells. As a
control, we validated that the differentiation score profile of p38i-
treated cells resembled that of proliferating cells treated with
DMSO alone (Fig. 5D,E; Appendix Figs. S14 and S15). The motility
classifier showed that the differentiation profile of p38i-ERKi-
treated cells followed a trend strikingly similar to the one obtained
for ERKi-treated cells and specifically included the gradual
transition at the critical time of 7.5–14.5 h (Fig. 5D). The mean
actin classifier score maxed at a value of ~0.5, which was not
sufficient to distinguish undifferentiated from differentiated cells,
suggesting that p38i alters actin dynamics (Fig. 5E). Nevertheless,
the actin model predicted a monotonically increasing trend,
suggesting that the cells were becoming more differentiated over
time.

Figure 3. Simple single-cell measurements are insufficient for continuous cell state transition characterization.

(A–E) Mean (solid line) and standard deviation (shade) of single-cell characteristics over time of ERKi-(orange) and DMSO- (blue) treated cells. N= 575 cells. Single-cell
properties included are local cell density (A), mean speed (B), mean actin intensity (C), mean actin intensity temporal derivative (D), and persistence in migration (E). (F)
Single-cell-state classification performance. Area under the receiver operating characteristic (ROC) curve (AUC) for classifiers trained using local density, speed, mean
actin intensity, mean actin intensity derivative, persistent migration, and integration of these properties to discriminate ERKi- and DMSO-treated cells experimental
conditions. The right-most bars show AUCs for classifiers trained with motility and actin dynamics. AUC scores were calculated for 757 temporal segments of
differentiated/undifferentiated cells from an experiment that was not used for model training (full details in “Methods”). (G) The single-cell correlation distribution
between the differentiation score and time for all the classifiers is shown in (F) (median shown in white). Dashed horizontal line shows no correlation. The thick black bar
represents the interquartile range between Q1 and Q3, the thin black line extending from it represents the rest of the distribution where its edges show the maximal and
minimal values, and the white dot shows the median correlation. The right-most distributions show correlations for classifiers trained with motility and actin dynamics
(N= 575 cells).
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To test the model’s prediction that co-inhibition of p38 and
ERK1/2 leads to properly differentiated cells that are ready to fuse
and that actin dynamics are altered under these conditions, we
acquired mass spectrometry data. We extracted proteins from

primary myoblasts treated with ERKi, ERKi+p38i, p38i, and
DMSO control for 24 h and used mass spectrometry-based
proteomics for unbiased, high-throughput identification of differ-
entially expressed proteins. In total 4319 proteins were identified

Figure 4. Correlation between terminal differentiation and fusion time.

(A) Annotations of single-cell fusion into a representative myofiber over time. Cells marked in white are already fused, and cells marked in yellow are fusing into the fiber.
Scale bar 100 µm. (B) Distribution of single cells’ fusion times (green) and terminal differentiation times determined by motility (yellow) and actin intensity (red)
classifiers. The dashed vertical gray rectangle highlights the differentiation time interval of 7.5–14.5 h. All three distributions were normal-like as assessed by the
D’Agostino’s K-squared test not rejecting the null hypothesis that the terminal differentiation time was normally distributed (D’Agostino’s K-squared test: motility
classifier: P value= 0.36, actin classifier P value = 0.64; fusion time P value = 0.1). The “terminal differentiation” state was determined using a differentiation score
threshold of 0.78 (the same threshold was also used in panels C-D). The models identified 56 (motility) and 52 (actin intensity) cells that reached a terminal
differentiation state, out of 68 annotated cells. 71% (motility) and 65% (actin intensity) of the identified cells reached a terminally differentiated state by 15 h post
induction. The median time of terminal differentiation was 12.63 (motility) and 14.2 (actin intensity); the median fusion time was 16.8 h. (C) Distribution of the duration
between single-cell terminal differentiation and fusion, for terminal differentiation determined by motility (yellow) and actin (red) classifiers (N= 68 cells). Both
distributions were normal-like as assessed by the D’Agostino’s K-squared test not rejecting the null hypothesis that the duration was normally distributed (D’Agostino’s
K-squared test: motility classifier: P value = 0.13, actin classifier: P value = 0.13). Median differentiation-to-fusion duration was 3.1 (motility) and 3 (intensity) hours. (D)
Associating single-cell terminal differentiation time (x axis) and fusion time (y axis), determined by the motility (yellow) and the actin (red) classifiers. Pearson correlation
coefficients were 0.52 (motility) and 0.73 (actin intensity), Pearson correlation’s P value < 0.001 for both actin and motility classifiers (N= 68 cells).
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across all experiments. Unsupervised hierarchical clustering
analysis showed that p38i-treated cultures cluster with the DMSO
proliferation control, consistent with previous studies showing that
p38 inhibition maintains myoblasts in the proliferative undiffer-
entiated state (Fig. 6A). The analysis also showed that ERK1/2 and
p38 co-inhibited cultures cluster with the differentiating ERKi-
treated cultures, suggesting that differentiation occurs under co-
inhibition conditions (Fig. 6A).

The actin cytoskeleton is essential for fusion and for the
subsequent formation of sarcomeres (Abmayr and Pavlath, 2012;
Deng et al, 2015; Gruenbaum-Cohen et al, 2012; Onel and
Renkawitz-Pohl, 2009; Richardson et al, 2008). Gene Ontology
(GO) annotation enrichment analysis showed a significant
upregulation of proteins involved in the process of actin
cytoskeleton organization and downregulation in the process of
skeletal muscle contraction and maturation in the ERKi-p38i co-
inhibition cultures compared to ERKi alone, consistent with an
arrest prior to fusion and maturation (Fig. 6B). These results
supported our conclusion that co-inhibited cells arrest at terminal
differentiation before fusion and maturation and explain the
deviation in the differentiation score of the actin, but not the
motility classifier, upon ERKi-p38i co-inhibition.

Strikingly, only 18 out of 504 proteins that were significantly
differentially expressed between the differentiated (ERKi) and the
differentiated unfused cells (ERKi-p38i) were completely missing
from the differentiated unfused cells (Fig. 6C). One of these being
Myomixer, which is known to be essential for fusion (Zhang et al,
2017; Quinn et al, 2017; Bi et al, 2017). These results suggest that
cell differentiation and fusion can be uncoupled and that p38 is
essential for the transition from terminal differentiation to fusion
and maturation, supporting the notion that differentiation and
fusion are coordinated processes that occur in tandem.

Discussion

We combined live-cell imaging and machine learning to infer the
differentiation state of single cells during the process of muscle
precursor cell differentiation. Many studies highlight the rich
information encapsulated in single-cell dynamics that, with the aid
of supervised or unsupervised machine learning, enable effective
identification of sub-populations and discrimination of perturba-
tions (Choi et al, 2021; Goglia et al, 2020; Jacques et al, 2021; Jena
et al, 2022; Kimmel et al, 2018; Valls and Esposito, 2022), that
cannot be inferred from static snapshot images (Copperman et al,
2021; Wang et al, 2020; Wu et al, 2022). For example, approaches
that rely on static snapshots make it extremely hard to infer

trajectories that deviate from the mainstream cell-state progression
because they are confounded by cell-to-cell variability. The
ability to measure a single-cell state as it transitions through time
during a physiological process, along with careful
experimental–computational interplay, enabled us to quantitatively
follow the process and derive biological insight. Specifically,
identify the key time frame where myoblasts gradually undergo
differentiation (Fig. 2D,E), link single-cell differentiation to fusion
(Fig. 4D), associate persistent migration with differentiation
(Fig. EV4), validate that co-inhibition of p38 and ERK1/2 arrests
the fusion process without altering the differentiation process, and
confirm our model’s prediction that actin regulators are altered
(Figs. 5 and 6). Ultimately, our experiments show that p38 regulates
the transition from differentiation to fusion, implying that there is a
differentiation checkpoint that must be reached before fusion
occurs, and opening new avenues to identify novel regulators of this
process.

The ability to infer the differentiation state of individual
myoblasts can further enable the identification of novel myogenic
factors, high-throughput screening for pro-regenerative com-
pounds, and the definition and subsequent examination of distinct
intermediate steps in the differentiation process. Moreover, this
approach of harnessing temporal dynamics by machine learning,
without explicit state markers, can be generalized beyond terminal
differentiation. Such a computational estimation of the cell state
may have wide applications in characterizing other single-cell
dynamic functions such as transitioning during the cell cycle,
epithelial to mesenchymal transition, immotile to motile, disease
progression, and cell death. The dynamic state readout can be
correlated to other, independently measured cell readouts to
systematically characterize the full spectrum of heterogeneities in
complex biological processes.

Unsupervised approaches for cell-state inference traverse from
an initial to a final state through steps that rely on similarity in cell
appearance (Gut et al, 2015). These trajectories can be distorted by
batch effects or cell phenotypes unrelated to the state transition. In
our approach, the supervised component forces the trajectory to
follow the phenotypic axes most relevant to the state transition
under investigation. This approach is similar to the approaches
taken by (Szkalisity et al, 2021), which rely on the manual
assignment of cells to discrete states in 2D that are then inferred by
regression analysis, or by (Stallaert et al, 2022) that uses a
supervised model to select features predictive of the cell state before
constructing cell-state trajectories.

Our approach uses the physiological cell state (undifferentiated
vs. differentiated) as the ground truth, optimizes binary classifica-
tion, and uses the classification’s confidence score as the cell-state

Figure 5. Differentiation and fusion can be uncoupled.

(A) Overlay images of primary myoblasts treated with p38i (left) and ERKi+p38i (left), fixed at 24 h and stained for MyoG (red) and nuclei (Hoechst, blue). Magnification
×5. Scale bar: 100 μm. Overlay images of myoblasts undergo differentiation but do not fuse. Scale bar 100 µm. (B) Fusion Index: Percentage of fused nuclei in ERKi and
ERKi-p38i-treated cultures. Error bar represents standard deviation (SD) of the mean (n > 50,000 cells per condition). Two-sample Student’s t test was used to assess
statistical differences between the groups, *** indicate statistical significance P value < 0.0005. (C) Percentage of MyoG-positive cells over time under proliferation
conditions (p38i; Black) and differentiation conditions (ERKi + p38i; red). DMDO and ERKi from Fig. 1B are shown for convenience (semitransparent). The error bar
represents the standard deviation (SD) of the mean (n > 50,000 cells per condition). (D, E) Mean (solid line) and standard deviation (shade) of the differentiation score
over time of ERKi- (orange), DMSO- (blue), ERKi+p38i- (green), and p38i- alone (purple)-treated cells using the motility (C) and actin intensity (D) classifiers (ERKi: 575
cells; ERKi+p38i: 208 cells; p38i: 202 cells; DMSO: 103 cells). ERKi- and DMSO-treated cells differentiation scores are the same as in Fig. 2. The analysis for the entire
experiment is shown at (Appendix Figs. S14 and S15).
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measurement. However, there is no guarantee that the classifica-
tion’s confidence score has linear properties. For example, whether
the difference in scores between 0.3 and 0.4 has the same
phenotypic magnitude as between scores of 0.6 and 0.7. This
limitation is also common to approaches that use non-linear
dimensionality reduction (Copperman et al, 2021; Eulenberg et al,
2017; Jacques et al, 2021; Rappez et al, 2020; Stallaert et al, 2022;
Wang et al, 2022; Wu et al, 2022) and could also limit unsupervised
state representations that can be dominated by features that do not
relate to the cell state (Copperman et al, 2021; Jacques et al, 2021;
Wang et al, 2022; Wu et al, 2022). Still, the monotonicity property
holds, e.g., a differentiation score of 0.4 is predicted to be more
advanced along the differentiation trajectory than a differentiation
score of 0.3. This implies that the machine-learning model captures
more phenotypic evidence for the advancement along the state
transition axis. This monotonicity property is sufficient for
comparing different trajectories and calculating temporal correla-
tions between cell state and other properties, as demonstrated here,
with motility persistence, and elsewhere (e.g., Mayr et al, 2021;
Zaritsky et al, 2021).

Methods

Mouse lines

We used 6–8 weeks-old female Actin and nuclear reporter mice
(LifeAct-GFP/ nTnG+/+) (Eigler et al, 2021). Fluorescence expres-
sion was validated using visual inspection. All experiments were
approved by the Animal Care and Use Committee of the
Weizmann Institute of Science (IACUC application #07690920-3).

Isolation and treatment of primary myoblasts

Primary mouse myoblasts were isolated from gastrocnemius muscle
using mechanical tissue dissociation as in ref. Eigler et al, 2021.
Briefly, after cutting the muscle tissue into small pieces, they were
incubated in Trypsin EDTA Solution B (0.25% Trypsin and 0.5%
EDTA, Biological Industries Israel) and subjected to mechanical
dissociation with a serological pipet. Supernatants were strained
(FALCON REF no. 352340) and centrifuged. Cell pellets were
resuspended in BioAMFTM-2 media (Biological Industries, Israel),

Figure 6. Mass spectroscopy analysis reveals differential protein expression between ERK1/2 inhibition and p38-ERK1/2 co-inhibition.

(A) Heatmap of significantly changed proteins (fold change > 2 and P value < 0.05) between ERK1/2 inhibition samples and p38-ERK1/2 co-inhibition samples, after
unsupervised hierarchical clustering. Each column represents the sample and each row represents the differentially expressed protein. High expression marked in red; low
expression marked in green. The sample clustering tree is shown on the top. (B) Bar plot of Gene Ontology (GO) Annotation Enrichment Analysis comparing ERK1/2
inhibition samples and p38-ERK1/2 co-inhibition samples. Colors denote different protein groups. (C) Volcano plot of differentially expressed proteins between ERK1/2
inhibition samples and p38-ERK1/2 co-inhibition samples. In total, 4317 proteins are shown, upregulated (red) and downregulated (blue). N= 3 biological replicates. One-
way ANOVA was used to assess statistical significance among the four experimental groups, the statistical analysis was done using Perseus software.
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plated on 10% Matrigel® Matrix (Corning REF no. 354234) coated
plates, and grown at 37° in a 5% CO2 incubator. BioAMFTM-2 was
used in all experiments (Biological Industries Israel).

Microscopy

For live imaging, 40.000 cells were plated in a Slide eight-well
chamber (ibidi GmbH, cat. no. 80826) coated with 10% Matrigel®
Matrix. Fifteen hours after cell seeding, the different treatments
were added to the cells cultured in proliferation medium
BioAMFTM-2 (Biological Industries Israel). To induce myoblasts
differentiation, cells were treated with 1 µM ERK inhibitor (SCH
772984 Cayman Chemical Company). The inhibitors are dissolved
in Dimethyl Sulfoxide (DMSO, MP Biomedicals cat. no. 196055,
1.10 g/ml stock concentration). Therefore, in the control sample of
proliferation, DMSO treatment was added in a concentration of
1 µg/ml (equal to 1 µl, the volume added of each inhibitor). In the
samples treated with p38 inhibitor, were used 5 µM (BIRB 796,
AXON 1358) either alone or together with ERKi.

Live imaging (37 °C, with 5% CO2) was performed using Cell
discoverer 7-Zaiss inverted in widefield mode with Zeiss Axiocam
506 camera Carl Zeiss Ltd. Images were acquired using a ZEISS
Plan-APOCHROMAT 20×/0.70 Autocorr Objective (Working
distance 2.20 mm). Excitation 470 nm for GFP signals (LifeAct)
and 567 nm for tdTomato (nuclei). ZEN blue software 3.1 was used
for image acquisition. If necessary, linear adjustments to brightness
and contrast were applied using ImageJ v1.52 software (Schindelin
et al, 2012). Cells were imaged 1.5 h after adding the treatments,
with 5 min intervals and at a pixel size of 0.462 µm.

Fixed samples were imaged using a ZEISS Plan-
APOCHROMAT 5×/0.35 Autocorr Objective (Working distance
5.10 mm), 1.178 µm/px. Excitation 470 nm for GFP (MyHC) and
567 nm for Alexa Fluor® 568 (MyoG) and 405 nm for nuclei stained
with Hoechst 33342.

Immunofluorescence staining of MyoG-MyHC

Primary myoblasts were seeded in a 96-well culture dish, coated in
Matrigel® Matrix at 8000 cells per well cultured in BioAMF-2 media.
After 15-h incubation at 37 °C in a 5% CO2 incubator, the cells were
treated with 1 µM ERK inhibitor (SCH 772984 Cayman Chemical
Company) and 5 µM p38 inhibitor (BIRB 796, AXON 1358) in the
needed samples. The inhibitors are dissolved in Dimethyl Sulfoxide
(DMSO, MP Biomedicals cat. no. 196055, 1.10 g/ml stock concentra-
tion). Therefore, in the control sample of proliferation, DMSO
treatment was added in a concentration of 1 µg/ml (equal to 1 µl, the
volume added of each inhibitor). Cells were fixed at specific time
points (0 h–6 h–8 h–10 h–12 h–16 h–24 h) with 3.7% PFA in PBS for
15min at room temperature. The cells were then quenched with
40mM ammonium chloride for 5 min, washed with PBS three times,
permeabilized in PBS with 0.01% Triton x-100 for 10min, and blocked
in 10% FBS in PBS (blocking buffer) for 1 h at room temperature.
Primary antibody incubation was done in a blocking buffer overnight
at 4°, with the following antibodies: Anti-Fast Myosin Heavy Chain
antibody [MY-32] (Ab51263), Abcam) 1:400, Anti-Myogenin anti-
body [EPR4789] (ab124800) 1:500. Cells were washed three times in
PBS and then incubated with secondary antibodies: Goat Anti-Mouse
IgG H&L (Alexa Fluor® 488) (ab150117) 1:600, Donkey Anti-Rabbit
IgG H&L (Alexa Fluor® 647) (ab150067) 1:600, Donkey Anti-Rabbit

IgG H&L (Alexa Fluor® 568) (ab175692) 1:600. The cells were washed
three times in PBS, incubated with Hoechst 33342 (Thermo Scientific
cat. no. 62249, 1:1000) for 5 min and washed in PBS.

Quantification
The percentage of expressing cells was calculated by dividing the
number of nuclei labeled by the MyoG antibody by the total
amount of cells given by the Hoechst staining in three independent
replicates of each experimental condition. The nuclei were
segmented and counted using the Cellpose software (Stringer
et al, 2021).

Quantification of fusion index
First, the nuclei were segmented and counted using the Cellpose
software (Stringer et al, 2021) together with a homemade Python
script to gain the total number of nuclei. Then, the fusion index was
quantified by manually identifying the number of nuclei found in
cells with at least two nuclei. The values were expressed as a
percentage of the total number of nuclei per field of view.

Actin intensity quantification in a field of view
The quantification was made using the ImageJ v1.52 software
(Schindelin et al, 2012). We measured the fluorescence intensity
signal of the entire field of view every hour and plotted the mean
intensity with stdDev calculated over all the pixel values of every
field of view.

Protein sample preparation for mass spectrometry

Primary myoblasts were grown on 10-cm plates coated in Matrigel®
Matrix at 1.2 × 106 cells per plate, cultured in BioAMF-2 media.
After 15 h the cells were treated with: (1) 1 µM ERK inhibitor (SCH
772984 Cayman Chemical Company) (2) 5 µM p38 inhibitor (BIRB
796, AXON 1358) (3) 1 µM ERK inhibitor with 5 µM p38 inhibitor
and (4) 0.1% DMSO in the control samples. Twenty-four hours
after treatment, cells were washed with PBS, harvested by scraping
and pelleted by centrifugation at 2000×g for 5 min. We lysed each
pellet in 1% SDS lysis buffer: 1% SDS in 50 mM Tris (pH 8)
containing protease inhibitor cocktail (Sigma Aldrich, catalog no.
P8849) and 1 mM PMSF. The samples were boiled at 95 °C for
5 min, then diluted into 2× RIPA lysis buffer to give 1× RIPA lysis
buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 0.5% SDS, 0.5%
sodium deoxycholate, 1% Triton X-100). The lysates were cleared
by centrifugation at 16,000×g for 10 min at 4 °C. Protein
concentration analysis was done using BCA kit (Pierce). A total
of 12 individual cell pellets were prepared for LC MS\MS analysis—
four treatments with three biological repeats. Protein samples were
frozen in liquid nitrogen and stored at −80 °C.

Proteolysis and mass spectrometry analysis

The proteins were dissolved in RIPA buffer, sonicated and
precipitated in 80% acetone. The protein pellets were dissolved in
in 9M Urea and 400 mM ammonium bicarbonate than reduced
with 3 mM DTT (60 °C for 30 min), modified with 10 mM
iodoacetamide in 100 mM ammonium bicarbonate (room tem-
perature 30 min in the dark) and digested in 2M Urea, 25mM
ammonium bicarbonate with modified trypsin (Promega), over-
night at 37 °C in a 1:50 (M/M) enzyme-to-substrate ratio. The
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tryptic peptides were desalted using C18 (Top tip, Glygen) tip,
dried and resuspended in 0.1% formic acid.

The peptides were resolved by reverse-phase chromatography
on 0.075 × 300-mm fused silica capillaries (J&W) packed with
Reprosil reversed-phase material (Dr Maisch GmbH, Germany).

The peptides were eluted with linear 180 min gradient of 5 to
28% acetonitrile with 0.1% formic acid in water, 15 min gradient of
28 to 95% and 25 min at 95% acetonitrile with 0.1% formic acid in
water, at flow rates of 0.15 μl/min. Mass spectrometry was
performed by Q Exactive HFX mass spectrometer (Thermo) in a
positive mode (m/z 300–1800, resolution 120,000 for MS1 and
15,000 for MS2) using repetitively full MS scan followed by high
collision induces dissociation (HCD, at 27 normalized collision
energy) of the 30 most dominant ions (>1 charges) selected from
the first MS scan. The AGC settings were 3 × 106 for the full MS and
1 × 105 for the MS/MS scans. The intensity threshold for triggering
MS/MS analysis was 1 × 104. A dynamic exclusion list was enabled
with an exclusion duration of 20 s.

The mass spectrometry data was analyzed using the MaxQuant
software 1.5.2.8 (1) for peak picking and identification using the
Andromeda search engine, searching against the mouse proteome
from the Uniprot database with mass tolerance of 6 ppm for the
precursor masses and 20 ppm for the fragment ions. Oxidation on
methionine and protein N-terminus acetylation were accepted as
variable modifications and carbamidomethyl on cysteine was accepted
as static modifications. Minimal peptide length was set to six amino
acids and a maximum of two mis cleavages was allowed. Peptide- and
protein-level false discovery rates (FDRs) were filtered to 1% using the
target-decoy strategy. The data were quantified by label-free analysis
using the same software with “match between runs” option. Protein
tables were filtered to eliminate the identifications from the reverse
database, and common contaminants. Statistical analysis of the
identification and quantization results was done using Perseus
1.6.10.43 software. Annotation enrichment was done by the string
tool (https://string-db.org/) and the David bioinformatics package
(https://david.ncifcrf.gov/).

Automated single-cell tracking and quantification

Automatic nuclei speed was performed using the commercial
software Imaris (v9.7.2, Oxford Instruments). We created a new
“spots” layer on the nuclei label channel using the default Favorite
Creation Parameters to track the spots over time, classify the spots,
and object-object statistics. Next, we estimated the diameter of
8 µm and enabled background subtraction. These analyses allowed
us to collect a large number of single-nuclei trajectories. While
trajectories frequently fragment using this approach, they were
sufficient to quantify the mean nuclei speed over time.

Semi-manual single-cell tracking

Semi-manual single-cell tracking was performed to obtain accurate
trajectories for training and evaluating our machine-learning
models. The time-lapse images were first converted to XML/hdf5
format using the BigDataViewer (v.6.2.1) FIJI plugin (Pietzsch et al,
2015; Schindelin et al, 2012). We then used the Mastodon FIJI
plugin (Mastodon—a large-scale tracking and track-editing frame-
work for large, multi-view images; https://github.com/mastodon-
sc/mastodon), for single-cell tracking and manual correction. We

tracked cells that resided within the field of view throughout the
entire experiment and included cells that fused into multinucleated
fibers and cells that did not fuse within the experimental time
frame. To reduce the manual annotation load, tracks that contained
less tracking errors were prioritized for manual correction.
Altogether, we collected 848 tracks for training (538 ERKi-treated
cells; 310 DMSO-treated cells), 789 tracks, from an independent
experiment, for testing (686 ERKi-treated cells; 103 DMSO-treated
cells), and 410 tracks, from the perturbation experiment (202 p38i-
treated cells; 208 ERKi+p38i-treated cells).

Preprocessing trajectories

We used OpenCV’s CalcOpticalFlowFarneback, based on Gunner
Farneback’s method (Farnebäck, 2003), for image registration to
correct erroneous offsets of the tracked cells’ trajectories. For each
pair of frames, we calculated the average offset and used the
corresponding translation for registration.

Models training

The training pipeline implements the following steps.

1. Determining labels for training. We assigned ERKi-treated cells
with the “differentiated” label in a time segment of 2.5 h (hours
12.3–14.8) before the first fusion event was observed in the field of
view. We decided not to label ERKi-treated cells as “undiffer-
entiated” at the onset of the experiment because we did not know
how early differentiation phenotypic signs appear. The increase in
MyoG-positive cells during the first 6 h of the experiment
supports this decision. We assigned time segments of DMSO-
treated cells with the “undifferentiated” label because their
differentiation begins after more than 23 h of the experiment.

2. Partitioning single-cell trajectories to temporal segments. We
partitioned trajectories of DMSO- and ERKi-treated cells to
overlapping temporal segments (overlap lag = 5 min) in equal
lengths of 2.5 h each. Temporal segments’ length was determined
to match the time frame where we consider ERKi-treated cells as
“differentiated”. This step resulted in 16,636 DMSO-treated cells
and 47,819 ERKi-treated cells temporal segments. For training, we
labeled as “differentiated” ERKi-treated cells in the temporal
segment of hours 12.3–14.8 and labeled as “undifferentiated”
DMSO-treated cells in non-overlapping temporal segments
throughout the experiment. Overall, we extracted 468 undiffer-
entiated and 268 differentiated temporal segments for training.

3. Extracting motility and actin features. We extracted single-cell
motility and actin intensity time series from each temporal
segment:
• Motility: We calculated the displacement of a single cell for
each time point t, creating a two-dimensional vector:
displacement tð Þ ¼ xt � xt�1; yt � yt�1ð Þ

• Actin: We cropped a quantification window of size 32 × 32 µm
around the center of each nucleus at each time point and
calculated the minimum, maximum, mean, median, and
standard deviation of the actin intensity within the window.

4. Extracting hundreds of single-cell time-series features using the
“tsfresh” python package (Christ et al, 2018). These features
encoded properties of the temporal segments, such as temporal
peaks, derivatives, and statistics. The tsfresh feature selection was
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based on the Benjamini–Yekutieli multiple test procedure
(Benjamini and Yekutieli, 2001) to identify the most relevant
features for characterizing the time series.

5. Training classifiers to distinguish between differentiated and
undifferentiated cells. We trained random forest classifiers, which
are considered effective with high dimensional and relatively
small datasets (Breiman, 2001), as validated empirically on our
data (Fig. S4). Hyperparameter tuning was performed using a grid
search with fivefold cross-validation (motility classifier: {“max_-
depth’: 12, ‘min_samples_leaf’: 1, ‘n_estimators’: 100}, actin
intensity classifier: {‘max_depth’: 20, ‘min_samples_leaf’: 1,
‘n_estimators’: 200}).

6. Evaluating the trained classifies’ performance. We assessed the
discrimination performance of our motility/actin classifiers on an
independent experiment that was not used for training. We
partitioned time series to overlapping temporal segments
(102,929 ERKi-treated cells segments, 7214 DMSO-treated cells
segments), selected temporal segments for evaluation as described
above for 577 differentiated and 180 undifferentiated temporal
segments, extracted motility and actin intensity time series,
performed feature extraction using “tsfresh”, and evaluated the
performance of the corresponding trained models. The AUC of
the motility and the actin intensity classifiers were 0.8 and 0.81,
correspondingly (Fig. 3F); accuracy was 0.76 and 0.81; precision
was 0.97 and 0.93; recall was 0.71 and 0.81.

Inference of single cells differentiation trajectories

Each single-cell trajectory was partitioned into overlapping
temporal segments of 2.5 h, with an overlapping lag of 5 min
(one frame). We calculated motility & actin intensity time series,
applied “tsfresh”, selected features according to training, and
applied the corresponding trained models on these feature vectors
to retrieve a differentiation score for each segment defining single-
cell differentiation trajectories.

Random field theory (RFT)-based inference

To evaluate the statistical significance of differentiation score
differences among cells subjected to distinct experimental condi-
tions, we employed random field theory (RFT) (Pataky et al, 2015;
Pataky 2016). RFT requires equivalent trajectory lengths. Thus, the
variation in the temporal spans of the tracked single-cell
trajectories led us to assess statistical significance in three non-
overlapping time intervals (4–10, 10–16, and 16–22 h). To reduce
noise, we applied a Gaussian filter to smooth the differentiation
score trajectories. Next, we performed a two-sample t test between
the trajectories under different experimental conditions. Larger
t-statistic indicates a lower likelihood of the observed differences
arising by random chance. A parametric inference using RFT was
conducted to determine the critical threshold with α = 0.05, under
the null hypothesis that there is no significant pattern in the
observed data, namely, any difference between the cells subjected to
distinct treatments is due to random chance. The resulting P value
represents the probability that the computed Gaussian fields would
surpass the critical threshold and reject the null hypothesis (the null
hypothesis is rejected if the t value traverses the critical threshold).
The RFT analysis was performed using the Python package rft1d in

the set level (the whole time interval), or in the cluster level in cases
where the t test statistic field crossed the critical threshold.

Correlation of differentiation score with time

The correlation between the single-cell differentiation scores and
time was computed through the critical time interval where
differentiation occurred (7.5–14.5 h). We used the Spearman
correlation coefficient as a measurement for the monotonic
increase in differentiation along a trajectory.

Prediction of the onset of the differentiation process

The onset of the single-cell differentiation process was determined
as the last stable time point below a threshold in the differentiation
scores. This time point was defined as the last time point of the
longest sequence with differentiation scores that ranged between
values 0.2–0.3.

Quantification of single cell predicted duration of the
differentiation process

The differentiation process duration is a proxy for the time a single cell
undergoes differentiation. The duration of the single-cell differentiation
process was determined as the time passed from the predicted onset of
differentiation to reaching a high stable threshold in the differentiation
scores. The high stable threshold was defined as the first time point of
the longest sequence with differentiation scores that ranged between
0.7–0.8. The differentiation process duration was calculated as the time
passed between the low and high stable thresholds.

Simple single-cell measurements and
corresponding classifiers

We calculated single-cell time series of the following
measurements:

• Local density: the number of nuclei within a radius of 50 µm
around the cell.

• Speed: speed tð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xt � xt�1ð Þ2 þ yt � yt�1ð Þ2
q

, where xt, yt are
the nuclei (x, y) position at time t.

• Mean actin intensity: mean actin intensity in a quantification
window of 32 × 32 µm around the nuclei.

• Persistence: The ratio between a single cell’s displacement and its
full path length. Persistence of 1 implies that the cell migrated in a
straight line.

For each measurement, and for all four together, we trained
random forest classifiers with the mean value in each temporal
segment to discriminate between undifferentiated and differen-
tiated cells. We evaluated the discrimination performance of each
of the five classifiers as described above.

Quantification of single-cell terminal differentiation time

The terminal differentiation time of a single cell is an estimation
based on the first time point of the longest sequence of
differentiation scores that are higher than a threshold value of
0.78 (to avoid local peaks).
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Manual annotation of fusion events timing

In total, 68 nuclei from 6 fibers were backtracked to the frame when
they fused into the fiber syncytium (Appendix Fig. S16).

Statistical analysis

Pearson correlation (scipy.stats.pearsonr function) was used to
assess the correlation between the terminal differentiation time and
fusion since we assumed a linear correlation between them
(Fig. 4D). Spearman correlation (using scipy.stats.pearsonr func-
tion) was used for correlating the monotonic increase in the
differentiation trajectories with time. D’Agostino’s K-squared test
(using scipy.stats.normaltest) was used to determine the normality
of distributions: duration of the differentiation process, terminal
differentiation time, fusion time, and duration between differentia-
tion and fusion.

Data availability

Source code and sample data are publicly available, https://
github.com/zaritskylab/muscle-formation-prediction. The mass
spectrometry proteomics data have been deposited to the
ProteomeXchange Consortium via the PRIDE (Perez-Riverol
et al, 2022) partner repository with the dataset identifier
PXD047198.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00010-3.
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Figure EV1. The number of differentiating myoblasts MyoG-expressing increase over time.

Images of primary myoblasts fixed at different time points after ERK inhibition and stained for nuclei (Hoechst, blue) and MyoG (red), along with Brightfield (gray) and
Merge for reference. Magnification ×5. Scale bar 100 µm.

Expanded View Figures
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Figure EV2. Immunofluorescence staining of MyoG and MyHC.

Representative immunofluorescence (IF) images of myoblasts at 0, 6, 8, 10, 12, 14, 16, 24 h after treatment with DMSO, p38i 5 μM or ERKi 1 μM or the combination of ERKi-
p38i. Cells were stained using anti-MyoG (red), anti-MyHC (cyan), and the nuclear dye Hoechst 33342 (gray). Magnification ×5. Scale bar: 100 μm.
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Figure EV3. Performance analysis of a classifier trained on both motility and actin dynamics.

(A) Accuracy, precision, recall and area under the receiver operating characteristic (ROC) curve (AUC) for classifiers trained with motility (yellow), actin intensity (red)
and a combination of motility and actin intensity (green) time series. Average accuracy rates were 0.74, 0.77 and 0.8; average precision rates were 0.77, 0.76, and 0.8;
Average recall rates were 0.84, 0.84 and 0.87; average AUC rates were 0.8, 0.78 and 0.84 correspondingly. All metrics were calculated for 678 cells from an independent
experiment. Overall, the combined classifier exhibits better classification performance. (B) Area under the receiver operating characteristic (ROC) curve (AUC) over time
for a combined model (N=678 cells). (C) AUC over time for a combined model- flipped experiments for train/test (848 cells). (D) Mean (solid line) and standard
deviation (shade) of the differentiation score over time of ERKi- (orange) and DMSO- (blue) treated cells using the combined classifier. Dashed vertical gray rectangle
highlights the time interval of 7.5–14.5 h, where the model predicted the differentiation occurs (ERK: 575 cells; DMSO: 103 cells). (E) Mean (solid line) and standard
deviation (shade) of the differentiation score over time of ERKi- (orange) and DMSO- (blue) treated cells using the combined classifier-flipped experiments for train/test
(ERK: 538 cells; DMSO: 310 cells).
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Figure EV4. Persistence in migration is associated with differentiation.

(A) Representative single cell’s differentiation score (yellow) as predicted by the motility-based model, and persistence in migration rate (purple) through time. (B)
Distribution of single cells Pearson correlation between the difference in differentiation scores and the difference in persistence rates. Values were calculated within time
intervals of 50 min. Mean Pearson correlation coefficient was 0.51. 88.07% of cells showed significant Pearson correlation (Pearson correlation P value < 0.05; N= 575
cells). (C) Single cells difference in differentiation scores (y axis) over difference in the persistence rate (x axis) between the beginning and end of the critical time window
where we identified differentiation occurs (7.5–14.5 h). Red diagonal line indicates the regression line. Pearson correlation coefficient was 0.55 (Pearson correlation P value
< 0.0001).
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Figure EV5. Co-inhibition of p38 and ERK1/2 leads to properly differentiated
ready to fuse cells.

Immunofluorescence images of primary myoblasts treated with p38i+ERKi for
24 h, before and 24 h after the inhibitors were washed. The cells were fixed and
stained for MyoG (red), MyHC (green), and the nuclei (Hoechst, blue), scale
bar 100 µm. 24 h after treatment with p38i+ERKi, most of the cells expressed
MyoG, were MyHC negative, and did not undergo fusion. Thus, the cells were
differentiated but unfused. 24 h after the inhibitors were washed, there was a
decrease in MyoG-positive cells, and most cells express MyHC, indicating that
cells completed the differentiation process and fused.
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