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ABSTRACT 

 

In vitro fertilization (IVF) is the most effective form of assisted reproductive 

technology.  However, selecting the embryos in treatments with the best implantation potential 

remains a challenging task. Despite several decades of clinical practice, there is no reliable non-

invasive method to identify the small fraction of embryos that possess the highest potential to 

develop into a blastocyst, which can then be implanted and hopefully proceed to term. Thus, to 

maintain reasonable pregnancy rates, current practice involves the transfer of multiple candidate 

embryos into the uterus. This results in clinical complications and health risks to the newborn and 

the mother, with many more multiple (embryo) pregnancies (over 10% of IVF pregnancies are 

twins or more). 

To improve the pregnancy rates of IVF treatment, and avoid complications to both mother and 

fetus, only the embryos that are the most likely to implant should be identified and implanted. To 

this end, several methods have been proposed to rate embryos. Most methods so far have 

considered only 2D images of the embryo taken by a camera on top of a microscope moments 

before transferring. 

The introduction of time-lapse incubation (TLI) systems in recent years provides continuous 

visualization of the embryos while maintaining them in optimal culture conditions. However, only 

a few studies have been conducted on the potential applications of time lapse imaging to assess 

embryos and identify the most viable ones. These are  based on manual annotation, which involves 

a significant workload and human expertise, are restricted to later developmental stages and have 

only reported limited success. 

This dissertation proposes an objective, automated and comprehensively evaluated system for 

grading models. First, I present a fully automated system that leverages deep learning to provide a 

continuous morphology-based embryo grading throughout its developmental process and 

demonstrate that it outperforms grading from a single snapshot. Second, I develop methods for 

grading embryos based on their morphokinetics - the timing of specific developmental stages - 

and  comprehensively assess the interplay between morphology, morphokinetics and other clinical 



5 
 

factors in the prediction of embryo implantation potential. Third, I make the conceptual 

observation that current many machine learning based IVF approaches optimize a non-optimal 

problem because they combine the two tasks of implantation prediction and embryo ranking, and 

propose practical steps to overcome these limitations. Finally, I apply the insight gained by 

previous advances to the development of a pseudo contrastive labeled based embryo grading 

algorithm that allows learning from all untagged embryos and surpasses previous approaches and 

a group of eight senior professionals, in identifying viable embryos from non-viable embryos 

based on implantation results, developmental trajectory analysis, and genetic testing. Altogether, 

my dissertation provides methodologies that extend beyond the current state of the art as well as 

deeper understanding regarding developing and applying machine learning solutions for IVF. 

These contributions will  hopefully drive the field forward and eventually provide better care for 

IVF patients.  
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1. INTRODUCTION 

 

Infertility treatment by clinical in vitro fertilization (IVF) procedures involves the fertilization of 

an egg outside the human body. Upon fertilization, embryos are incubated in a culture medium for 

2-7 days (Eskew & Jungheim, 2017). Once the embryos have reached the desired developmental 

stage, one or more embryos from the same cohort are transferred to the woman’s uterus at the 

appropriate time in her menstrual cycle. 

The clinical choice of the optimal time for transfer varies, and depends on maternal age, fertility 

status, and the number of fertilized oocytes. Preimplantation embryo development in mammals 

corresponds to 5 to 7 days of culture following oocyte fertilization and human embryos hatch on 

Day 6 (Chimote et al., 2016). There is a general consensus that the environmental conditions of 

embryo cultures in an incubator are not optimal (Mauri et al, 2001; Swain et al., 2016) and that 

most embryos are unable to implant in the uterus or produce a pregnancy (Jarvis, 2016). To avoid 

damaging the developmental potential of the embryos to implant or undermining the chances of 

pregnancy due to their prolonged culture in the incubator, the embryos need to be transferred as 

soon as possible.  

This underscores the critical need to identify the embryos with the highest developmental potential. 

Since the ability to discriminate between high-quality and poor-quality embryos increases with 

time in culture, embryos tend to be transferred as late as possible. In practice, the compromise is 

to transfer embryos on Day 3, which corresponds to the 8-cell cleavage stage (Yang et al. 2015). 

In cases where there are a relatively large number of embryos from one woman, doctors are more 

likely to extend the time of culture of the embryos to five days and transfer the ones that have 

reached the blastocyst stage (Hatırnaz & Kanat Pektaş, 2017). 

To date, procedures that can evaluate the developmental potential of cleavage-stage embryos, 

reported only a limited success (Alpha Scientists, 2011). Thus, more than one embryo is routinely 

transferred to obtain reasonable pregnancy rates. Along with increasing the pregnancy rates, 

multiple embryo transfers can also lead to multiple pregnancies (MP), which occur due to 

successful implantation of more than one embryo. MP rates depend on maternal age and typically 
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account for 10 to 15% of all IVF pregnancies of which >95% are twins (David et al., 2016). MPs 

are associated with a higher risk to the mother and the newborn (Khalaf, 2013). These 

complications place a significant clinical and financial burden on healthcare services worldwide 

and consume valuable resources. Eliminating this negative impact requires the transition from 

multiple- to single-embryo transfer (SET) schemes, which thus demand early-stage identification 

of the embryos with the highest developmental potential for implantation (Yang et al. 2015). 

1.1.  Microscopy and Algorithmic Techniques for Embryo Selection  

Up to recent years, embryo selection during IVF  was performed manually by clinical 

embryologists based on visual examination of morphological characteristics from embryos using 

an optical microscope at various stages of development such as the cleavage stage (Day 3, Holte 

et al. 2007) or even when the pronuclei are visible (Day 1, Mirroshandel et al. 2016), with 

limited success. To overcome this inability to accurately evaluate embryos at early 

developmental stages, culturing embryos to the blastocyst stage combined with grading protocols 

have frequently been implemented in both research and  clinical practice (Blake et al., 2007; 

Gardner et al., 2000; Richter et al., 2001; Shapiro et al., 2008;; Papanikolaou et al., 2006; 

Papanikolaou 2008).One of the most common scoring systems used by embryologists is the 

Gardner's Score (Gardner et at. 2000), which evaluates embryos based on characteristics of 

morphological structures like inner cell mass (ICM), trophectoderm quality and embryo 

developmental advancement. Such manual grading is, however, extremely subjective, and there 

is a high level of variation between embryologists, leading to a wide range of variability between 

and within operators (Kragh et al. ,2019). As a result, standardized algorithms for grading and 

evaluating embryos are critical. Recent studies by Khosravi et al. (2019) and Kragh et al. (2019) 

showed high levels of accuracy in the classification of blastocyst features used by the Gardner 

Score. While this approach may be useful for standardizing embryo classification according to 

the Gardner score,  it has limited potential to improve  implantation rates over solutions offered 

more than two decades ago. 

Other attempts have been made to replace manual morphological grading with automatic systems. 

As an initial step, hand-designed features were extracted to train traditional machine learning 

models such as SVM  (Hassan et al. 2018, Chavez-Badiola et al. 2020), multivariate logistic 
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regression (Chen at al. 2016), genetic algorithm and decision trees (Guh et al. 2011), Bayesian 

networks (Corani et al. 2013) and neural networks (Chavez-Badiola et al. 2020). Other studies 

incorporated clinical data, such as patient/oocyte age, causes of infertility, stimulation of the 

oocyte, and semen analysis (Loendersloot et al. 2014; Raef et al. 2019). In spite of these advances, 

there is still no generalized method available to measure embryo development at all stages and 

times.   

Unlike traditional microscopy that can only capture snapshots of a few discrete points in time, 

time-lapse incubation (TLI) allows for constant monitoring of fertilized embryos (Aparicio-Ruiz 

et al., 2018, Meseguer et al., 2011). Numerous publications have addressed various cleavage stage 

tasks such as predicting blastocyst formation, automatic annotations and abnormal genetic 

chromosomal detection (Chen et al., 2014, Milewski et al., 2011, Reignier, 2018, Swain, 2013, 

Malmsten et al. 2021). Several studies have demonstrated positive correlations between pronuclei 

markers and embryo viability. Specifically, markers  such as the appearance of pronuclei and 

fading timing (tPNa, tPNf), the number of pronuclei,  pronuclei shape, symmetry and joint path 

have been associated with blastocyst development and implantation (Aguilar et al. 2014; Lynette 

et al. 2000;Mingzhao et al. 2017). However, neither of these markers has ever been integrated into 

a scoring system, and not all embryos are placed early enough in the TLI to track the pronucleus 

stage. Other studies suggested various dynamic markers of embryo quality that can lead to new 

approaches to embryo selection (Basile et al., 2014, Hlinka et al., 2012; Meseguer et al., 2011; 

Milewski et al., 2016). The most common (patented) implantation scoring for cleavage stage 

embryos is the KID3-score, EmbryoScope's built-in algorithm (Vitrolife®), which gives a (one-

time) prediction after 66 hours and consists of a 58% AUC (Adolfsson et al., 2018). Yet, as these 

features are acquired manually, it relies on each embryologist's experience, precision, and ability 

to recognize normal cleavage patterns from abnormal ones. As a result, intra-operator and inter-

operator variability, across embryologists and different labs, are significantly higher than when 

using two-dimensional microscopy (Sundvall et al., 2013).   

Due to technological advancements in cell culture media, blastocyst stage transfers have become 

increasingly popular. Compared to the cleavage stage, blastocyst embryos are better synced with 

the uterine milieu and contain more information on embryo viability (Glujovsky   et al. 2016). 

However there is no clear evidence that blastocyst stage transfers are associated with higher rates 
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than cleavage stage transfers (Blake et al. 2007 , Glujovsky   et al. 2016; Papanikolaou et al. 

2006).   

New markers and grading models for Day 5 blastocyst embryos have also been proposed based on 

TLI tracking. According to one study (Saraeva et al. 2019), spontaneous blastocyst collapse is 

correlated with poor pregnancy outcome. An earlier study (Kragh et al. 2019) demonstrated the 

use of TLI streaming to automatically grade the Inner Cell Mass (ICM) and Trophectoderm. The 

results indicated that TLI led to inferior results compared to a single microscopy image snapshot. 

In yet another study (Bori et al. 2020) different spatial parameters (mainly related to the Zona 

Pellucida(ZP), Inner Cell Mass (ICM) and Trophectoderm (TE) related) acquired at  different 

development stages (mainly late blastocyst stages) were used as features to accurately predict 

implantation results. There is one major disadvantage of all these studies: they focus on a local 

task (e.g., ICM and TE ranking), or they use manually selected temporal and spatial features, which 

are sparse in the TLI stream, making them difficult to apply in practice because of the quantity of 

data and expertise needed. More importantly, they were  all limited to late blastocyst embryos, 

whereas regular microscopy can also provide embryo scoring.  

Overall, both cleavage stage and blastocyst stage algorithms ignore the extra information outside 

of a specific developmental stage, thus not using the majority of the collected images. To date, 

there is no algorithm that exploits TLI streaming as a whole; i.e., that translates continuous 

embryo streaming into continuous embryo scoring and can be applied  to  all embryos with no 

limitations (e.g., restriction to the  cleavage stage, blastocyst stage, etc.). Similarly there is no 

algorithm that is fully automated and does not  require any human intervention and can be 

applied at any time and developmental stage. Thus, current TLI based algorithms do not exploit 

the information that can be acquired from continuous tracking of the TLI, but rather draw on 

multiple images which are used individually. 

 

 

 



10 
 

1.2. Convolutional Neural Networks (CNN) for Embryo Selection  

Deep Convolutional Neural Networks (CNNs) are deep learning algorithms that can take in an 

input image, assign importance to various aspects/objects in the image, and differentiate one from 

the other. In particular, CNNs can exploit both spatial and temporal information, possibly at the 

same time, using 3D convolutional layers or recurrent networks (Mikolov et al., 2010). CNNs have 

led to state-of-the-art results on a variety of problems such as image classification and 

segmentation, object detection, video processing, speech recognition and natural language 

processing (Frizzi  et al., 2016; He et al. 2017; Larsson et al., 2016; Wahab et al, 2019).  Inspired 

by how the human brain works, deep CNN uses multiple feature extraction stages that can 

automatically learn representations from the  data. The growing availability of data and advances 

in computing power have accelerated research in CNNs. 

 A deep network framework called IVY, has recently been developed to determine implantation 

potential of blastocyst embryos from time-lapse videos (Tran et al., 2019).  The objective of their 

study was implantation prediction. Analysis of their data, however, reveals they studied how to 

discriminate visually defective discarded embryos, a fairly easy classification task that resulted 

in an impressive AUC of 0.93.  

1.3.  My dissertation:  automated and continuous methods for embryo 

grading based on TLI data  

Studies based on TLI are often limited to later developmental stages, mainly Day 5 blastocysts, 

and require manual annotations of many spatial/temporal features from the TLI stream to obtain  a 

single score. 

To date, there is no accepted or standardized algorithm that takes advantage of the enormous 

amount of information acquired in the TLI and can be applied to all embryos in all developmental 

stages. Additionally, TLI has not yet been shown to outperform traditional microscopy-based 

scoring. As a result, despite the explosion in terms of information that the TLI provides, IVF 

treatments remain inefficient, costly, and can involve numerous health-related complications to 

the mother and the baby associated with multiple pregnancies. 
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Stated simply, although TLI provides continuous tracking of the embryo, embryo selection 

algorithms are only available at a given late time, typically only  after 3-5 days after fertilization. 

In that sense, the efficiency of TLI is very low, and the huge streaming data are simply considered 

a convenient way to obtain multiple microscopy images without having to remove the embryo 

from the incubator. There is no holistic approach that translates this continuous streaming into 

continuous embryo evaluation. This is mainly due to the fact that the TLI stream has yet to be 

exploited as a whole, but rather is used to capture specific features of specific parts of the embryo. 

In turn, current TLI based methods cannot provide early indications of embryo viability or 

continuous monitoring which explains why the use of  TLI at IVF is not widespread. 

1.3.1. Goals and Contributions of this Thesis 

The primary goal of this work was to develop novel, automated, accurate and continuous classifiers 

of embryo blastulation, implantation and viability based on the entire time-lapse video. The 

importance of these classifiers is that they exploit TLI streaming as a whole and can be applied to 

all embryos with no limitation of time or developmental stage. Further, they do not require any 

manual annotations which are time-consuming, and provide continuous estimations of embryo 

viability as early as Day 1, rather than a single score long after the oocyte was fertilized. Thus, 

unlike other algorithms, it can be use seamlessly in real-time IVF sessions. 

As importantly, this thesis also aims to discover and compare different training schemes in order 

to better understand what information can be extracted by the TLI at different times. The 

dissertation also discusses a number of different aspects of training embryo grading models, 

including the optimization task, train and test data, and potential cofounders. 

The main contributions of this thesis can be summarized as follows: 

1. TLI's continuous monitoring is transformed into continuous embryo scoring, utilizing the 

entire TLI stream instead of just small fragments, resulting in the earliest scoring and best-

in-class accuracy for both blastocyst formation and implantation predictions. Unlike 

existing approaches used in IVF treatments, none of the models here require manual 

annotations and/or spatial/temporal feature extraction. Mathematically, it provides an 
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embryo scoring function over time rather than simply a singular scalar embryo score 

(obtained long after fertilization time). 

2. Analyze the types of information available in TLI data by comparing different AI models 

based on each type of information. We compare morphokinetic information which 

represents the global developmental path with morphological information which represents 

the most current embryo status and explain the findings in relation to current medical best 

practice. Furthermore, we demonstrate that a joint model using both types of information 

beats each of them in all conditions.  

3. Examines the differences between embryo ranking and implantation prediction. Our study 

shows that while solving the former with the latter is common for choosing the right 

embryos to be transferred, it leads to a suboptimal outcome. Comparing models trained to 

predict implantation outcomes with and without a known oocyte age shows this 

suboptimality. Instead, we urge separating both subtasks in order to choose the best 

embryos for transfer. 

4. Show the trade-off between learning from hard, yet noisy-labeled data versus more trivial, 

yet clean-labeled data, with detailed and compensating analysis. 

5. Present a pseudo contrastive label learning framework in the presence of noisy and poorly 

known data, that significantly outperforms fully supervised learning scheme. 

1.4.  Organization  

This dissertation includes four projects, each packaged as an independent manuscript and in 

different stages of publication. Each project constitutes a chapter as follows: 

The first study presents deep learning classifiers of blastocyst formation and implantation based 

on short-time (termed packets) morphological features. We were inspired by the idea that embryo 

grading may be achieved  by finding unseen  biomarkers within the TLI data that can be used to 

classify the embryos in some sense (implantation probability, blastocyst formation, viability, etc.). 

A CNN framework is presented to reveal unseen biomarkers seamlessly. It incorporates a time-

dependent architecture with shared weights between times, an adaptive weighted hinge loss where 

the scoring for several packets is optimized to ensure correct embryo classification, and a multi-
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frame (non-linear) fusion of the single frame scoring into a single embryo prediction scoring 

method. This research was extended and published as a separate study (Kan-Tor et al., 2020). 

The second study introduces two fully automated morphokinetic and morphology models for 

predicting embryo viability and compares them. It then integrates morphology with 

morphokinetics and shows that the combination of both improves embryo classification accuracy 

over both the morphology and  the morphokinetic models at all times. This study was performed 

with Dr. Assaf Ben-Meir and is currently under review in Human Reproduction. 

The third study discusses the practical task of choosing embryos for transfer from a cohort of 

siblings’ embryos. In particular, the difference between the task of predicting implantation and 

grading embryos by their viability is discussed and the impact of oocyte age on both tasks is 

analyzed. It is shown that although learning in the presence of  known oocyte age improves 

implantation prediction, it lessens the ability to choose the most viable embryo from a cohort of 

same aged embryos, and thus should not  be used to pick the best embryo for transfer from a cohort 

of related embryos. Instead, the practical scheme should consist of 2 models. The first ranks 

embryos based purely on embryonic related information, such as visual morphology and 

morphokinetics. Then, a second model determines the potential of each embryo to progress a full 

term, considering maternal information, to decide how many embryos should be collectively 

transferred. This study was submitted.  

The forth study introduces a pseudo-contrastive-label learning framework to grade embryos by 

their viability. Approximately only 15% of all  embryos have a known implantation outcome. The 

remainder are embryos  are discarded, frozen or jointly transferred (Tran et al. 2019). Further, the 

non-implanted embryos have noisy labels, because a  negative outcome may be due to maternal or 

other non-embryonic related reasons. Therefore, a learning framework that  considers the noise in 

the negative (termed KIDn) label would likely lead to better results. In this chapter we propose a 

Pseudo Contrastive Labeling scheme that makes it possible to use any embryo, regardless of its 

original label (i.e., positive (termed KID-P), KIDn, ambiguous (termed KIDuk) or Discarded). As 

a result, the training size increases six fold since all the embryos are added to the training set, rather 

than just the fully labeled ones. We demonstrate the efficiency of the new scheme over learning 
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based on the known implantation labels. This study was performed with Prof. Lior Wolf and is 

currently under review in Scientific Reports.  
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Summary 

In IVF treatments, early identification of embryos with high implantation potential is required for 

avoiding clinical complications associated with multiple-embryo pregnancy. Current classification 

tools evaluate embryo potential based on manual annotation of morphological features and 

morphokinetic events. Despite the availability of time-lapse incubators that record 

preimplantation development, there is no reliable non-invasive method for evaluating embryo 

potential. We employ deep learning tools to develop automated, accurate and standardized 

classifiers of embryo blastulation and implantation based on time-lapse videos. Our learning set 

consists of over 12,000 embryo video files and clinical metadata obtained from five medical 

centers. Our prediction of embryo blastulation and implantation outperforms current state-of-

the-art classifiers. Moreover, our classifiers spontaneously tuned to times of high information 

entropy based on cleavage-states distributions, providing insight into learning mechanisms. 

mailto:ityer82@gmail.coml


Clinical implementation of our classifiers will improve IVF treatments by shortening time-to-

pregnancy and facilitating single embryo transfers. 

 

Introduction 

Today, in vitro fertilization – embryo transfer (IVF-ET) procedures account for 1.7% of all 

newborns in the United States.1 After 40 years of clinical practice, there is no reliable non-invasive 

method available for identifying the small fraction of embryos that possess the highest potential 

to develop into a blastocyst, to implant and to proceed to full term labor.2,3 To maintain 

reasonable pregnancy rates, current practice involves the transfer of multiple non-genetically 

diagnosed embryos into the uterus. As a result, clinical complications and health risks to the 

newborn and the mother which are associated with multiple (embryo) pregnancy cannot be 

avoided.4  

The introduction of time-lapse incubation systems provided continuous visualization of the 

embryos while maintaining them in optimal culture conditions.5,6 These video recordings 

facilitated the design of classification algorithms that evaluate embryonic potential based on 

morphokinetic annotation of discrete events (time points of appearance and fading of the 

pronuclei and cleavage events).7,8 Notably, morphokinetic classification may limit accurate 

assessment of embryo quality, which can just as well be encoded within other visible dynamic 

features.8 In addition, manual annotation requires a significant workload and human expertise, 

and is prone to variations between annotators.  

To overcome these limitations, embryos can be evaluated using automated computer-based 

artificial intelligence tools. Convolutional neural networks (CNN’s) are among the most impactful 

innovations in computer vision in recent years. CNN’s facilitated automated object detection, 

speech recognition, face recognition and medical image segmentation 12-19 that made significant 

advances in biomedical imaging, security and biometric applications, and autonomous 

vehicles.10-11  

Here we report the development of automated, accurate and standardized classifiers for 

identification of the most competent embryos at early preimplantation stages. Since deep 



learning requires large datasets, we generated an expansive database, termed SHIFRA, that 

includes video files of tens of thousands of embryos and their transfer and implantation rates 

that were collected from five hospitals across Israel. We combine classification algorithms of 

embryo blastulation and embryo implantation, which demonstrate superior prediction compared 

with KIDScore-D3LTD 9. Mechanistic analysis reveals a relationship between blastomere cleavage 

states and the visual encoding of embryo developmental competence. Deep learning automated 

classification holds the potential to improve clinical outcomes by facilitating single embryo 

transfers while maintaining high implantation rates.  

 

 

 

 



Results 

The SHIFRA database: video files and clinical metadata for thousands of embryos 

The implementation of time-lapse incubators in IVF clinics provided for the first time a large 

dataset of video files of high optical quality that offer detailed dynamic description of embryo 

development in association with medical background and clinical outcome.20 We constructed the 

SHIFRA database, which includes information on tens of thousands of embryos obtained from 

nine incubators (Embryoscope time-lapse system, Vitrolife) located in five medical centers all 

across Israel (Fig. 1a, Table S1). Each embryo is marked by maternal characteristics (maternal 

age), embryonic fate (fresh-transfer/frozen/discarded) and outcome statistics (single/multiple 

embryos transfer and implantation rates). Implantation in the uterus was determined based on 

established protocols as determined by the number of gestational sacks and heart beats 

measured on week five and six of pregnancy. In the case that the number of transferred and 

implanted embryos is equal, the embryos are labelled Known Implantation Data-positive (KIDp). 

KID-negative (KIDn) corresponds to the case of no implanted embryos, and KID-unknown (KIDu) 

labels embryos whose implantation outcome cannot be determined (e.g., three transferred 

embryos, one or two implanted embryos). Similarly, embryos that were incubated longer than 

three days and show start-of-blastulation (SB) were classified BLAST-positive (BLASTp). Since 

BLAST-negative (BLASTn) embryos cannot be identified by direct observation, we applied a 

statistical algorithm that identifies the embryos which were arrested at earlier developmental 

stages and cannot reach blastulation. A detailed description of this protocol, which is based on 

the time windows that are associated with each morphokinetic state and their intervals, is 

provided in the Methods section (Fig. S2).  

Time-lapse videos record up to six days of preimplantation development with 15-to-20 min 

intervals. At each time point, the entire three-dimensional (3D) volume of the embryos is 

captured by recording a seven-focal plane z-stack ranging from -45 to +45 𝜇𝑚 (Fig. 1b-ii, 500 x 

500 pixels, 8 bit grayscale). Based on these time-lapse imaging, morphokinetic annotation of the 

embryos in the database was performed by expert and trained embryologists in accordance with 

established protocols8 and validated by performing quality assurance (QA, Fig. S1a-b). Based on 

a total of 12,102 embryos, we calculated the temporal distributions of morphokinetic events (Fig. 



1a, Table S2) and their consecutive intervals (Fig. 1b, Table S3). Morphokinetic distributions 

clearly show the separation between first (tPNf-to-t2), second (t3-to-t4) and third (t5- to-t8) 

cleavage cycles where the transitions between cell cycles typically lasts twelve hours (Fig. 1b). 

The small fraction of embryos that show simultaneous cleavage events (t2 and t3; t4 and t5) are 

associated with direct unequal cleavage7.  

 



  
 



Figure 1 | Deep learning classifier of embryo blastulation trained on an expansive database of 

preimplantation development. (a) The SHIFRA database (>12,000 embryos in total) includes 

clinical (Time-lapse incubator; Medical center; superovulation protocol), maternal information 

(maternal age), number of co-transferred embryos (3520 transfer cycles) and implantation 

rates. Abbreviations: A- Agonist; SA-Short Agonist; LA-Long Agonist. (b) Preimplantation 

development of embryos that are cultured inside a time-lapse incubator are recorded at 15-to-

20 min intervals over up to six days. (i) A series of representative snapshots show embryonic 

developmental stages. (ii) A z-stack of seven focal planes, separated by 15 𝜇m, are recorded at 

each time point. A z-stack of the 4-cells stage is shown. (c) Morphokinetic distributions of 

BLASTp and BLASTn embryos show significant overlap as evident by low KS test scores (top 

row). (d) BLAST prediction performances by SHIFRAB, measured using area under the curve 

(AUC), increases monotonically as a function of time of classification. (e) ROC curves at 72 hours 

for (i) all embryos, (ii) high quality t8-positive embryos (embryos that reached 8C stage), and 

(iii) very high quality tM-positive embryos (embryos that reached Morula stage). 

   

Deep learning of embryonic developmental potential 

Examination of the morphokinetic distributions of BLAST-labeled embryos reveals almost 

complete overlap, indicating that BLAST classification is a complex task that cannot be resolved 

based on average morphokinetic profiles per se (Fig. 1c, KS test: 0.1 to 0.3). This conclusion is 

further supported by comparing the morphokinetic distributions of KID-labeled embryos (Fig. 2a; 

0.1 < KS test < 0.2). Therefore, we employed advanced deep learning tools to develop an 

automated, accurate and standardized classifier of embryo blastulation and embryo 

implantation. Following strict methodologies, BLAST and KID validation sets were generated by 

randomly removing 18% of the positive and negative labeled embryos. Validation sets were 

maintained uncontaminated until prediction by BLAST and KID classifiers was performed after 

training was completed.  



 

Figure 2 | SHIFRAK is an accurate, automated and standardized classifier of embryo 
implantation. (a) Morphokinetic distributions of KIDp versus KIDn embryos show significant 
overlap as evident by low KS test scores (top row). (b) Embryo implantation prediction 
performances by SHIFRAK, measured by the AUC, increase as a function of time of classification. 
The drop in AUC is the result of a decrease in the number of transferred embryos for training 
with incubation times longer than 80 hours (Fig. S3a-b). Compared with KIDScore-D3 (Vitrolife, 
purple mark), SHIFRAK demonstrates superior classification. (c) ROC curves of implantation 
prediction at (i) 60 hours compared, (ii) 72 hours and (iii) 90 hours.  



 

In general, the convergence of supervised neural networks depends on both the size of labeled 

objects and its variability. We performed preprocessing of the input video files, ~100 MB, as 

follows (Fig. 3a): (1) Identification and discarding of empty well images (Fig. S4a, see Methods). 

(2) Cropping of square ROI’s that contain the embryos (Fig. S4b, see Methods). (3) Down-sampling 

of cropped embryo ROI’s. Next, five consecutive preprocessed frames of the same focal plane 

and the same embryo were grouped into packets. In this manner, we captured the dynamic 

nature of preimplantation processes that can last 60 to 90 minutes (e.g. cleavage). Within each 

training batch, each embryo was thus represented by four packets, which is equivalent to a 

decrease of the raw video file to less than 1 MB. 

 

Figure 3| Neural network design. (a) Preprocessing of the video files of the embryos into a small 
set of five-frames packets, 𝑃𝑛

𝑚, accounts for a ~150 fold dimension reduction. Packets are defined 
by their embryo index, 𝑚, and their time index, 𝑛. (b) Network design is sketched. Conv: 
Convolution. RCB : Residual convolution block. Time: Incubation time of the middle frame.  

 

CNN design consisted of 13 layers as illustrated in figure 3b. The architecture of the network is 

described in details in the Methods section. To emphasize preimplantation dynamics, packets 

were scored relative only to other packets of the same 12-hours’ time windows. We postulate 



that embryo developmental potential is marked by scarce events. Namely, a small number of 

‘positive’ packets are sufficient to score a positive embryo whereas a negative embryo must be 

scored negative by most packets. This principle is implemented by modifying the soft hinge loss 

to optimize the performances of the classifier (see Methods). CNN training by BLAST-labeled and 

by KID-labeled embryos converged following ~three epochs. Following training, the network was 

applied to BLAST-labeled and to KID-labeled embryos to evaluate their respective developmental 

potentials as described below. To obtain as much information as possible, each embryo was 

scored using all of its packets up to the time of classification. We found that classification 

performances were not compromised when we included only the packets that belong to the 

twelve hours that precede the time of classification and ignore earlier ones (Methods).  

 

 

Early prediction of embryo blastulation 

The capacity of an embryo to reach the blastocyst stage inside the incubator marks its 

developmental competence and is linked with the capacity of the embryo to implant in the 

uterus3. Hence, early identification of BLASTp embryos is of high clinical value. We developed the 

SHIFRAB classifier by performing deep learning of BLAST-labeled embryos. Our first aim was to 

elucidate the relationship between classification time and BLAST-prediction. For each 

classification time, only embryos with video recordings longer than that were considered for 

training, where only frames earlier than the classification time were used. Overfitting of SHIFRAB 

was invalidated by the overlapping ROC curves of BLAST-classification of the train, test and 

validation sets (Fig. S5a). BLAST-prediction, measured by the area under the ROC curve (AUC), 

increased monotonically from 0.66 at 60 hours and 0.76 at 72 hours to 0.85 at 90 hours (Fig. 1d). 

As expected, BLAST classification becomes more difficult when applied to cohorts of high-quality 

embryos that either reached 8-cells stage (8Cp) or reached Morula stage (MORULAp) as compared 

with all embryos (Fig. 1e). Nevertheless, BLAST prediction remained well above random, thus 

demonstrating the classification robustness of SHIFRAB.  

Positive and negative predictive values (PPV and NPV) were calculated as a function of SHIFRAB’s 

threshold value at 72 hours (Fig. S5b). Generating a binary classifier based on SHIFRAB requires 



choosing a threshold value, which should be directed by clinical considerations. Clinical 

implementation of single embryo transfers (SET’s) requires minimizing false-positives. We 

therefore plot the confusion matrix at threshold value 41, which satisfies PPV=0.9 and NPV=0.33 

(Fig. S5c). Taken together, SHIFRAB demonstrates high classification performances with 

important clinical value, thus serving as a proof of concept of automated embryo classification. 

 

Early prediction of embryo implantation 

SHIFRAB demonstrates a proof-of-concept of fully-automated classification of embryo 

developmental competence. Unlike blastulation, which depends on the quality of the embryo, 

implantation also depends on the receptivity of the uterus and on other factors that are not taken 

into account in the learning process.  Hence, we designed SHIFRAK by integrating six neural 

networks in parallel to avoid overfitting. The design and training of each network was identical 

to SHIFRAB as described above. Three neural networks were trained on BLAST-labeled embryos 

and three networks were trained on KID-labeled embryos. Importantly, SHIFRAK is a KID-classifier 

where all six networks predict implantation of KID-labeled embryos. As a result, six scores are 

generated for each embryo. A final implantation score was obtained by performing weighted 

summation using linear soft support vector machine (SVM, see Methods) with respect to the KID-

label of each embryo.  

KID classification performances were evaluated by applying SHIFRAK on the validation set. At each 

classification time, a ROC curve was generated and the AUC was calculated (Fig. 2b). The AUC 

changes non-monotonically with classification time due to the combined opposite effects of the 

overall gain of information during embryo incubation and the decrease in the number of KID-

labeled embryos that are available for training between 60 and 90 hours (Fig. S3). AUC was 0.63 

at 60 hours, 0.66 at 72 hours and 0.75 at 90 hours (Fig. 2c). The improvement in KID classification 

between 72 and 90 hours owes to an increase in PPV where NPV remains almost unchanged (Fig. 

S6a-b). KID prediction is illustrated at 72 hours and at 90 hours by choosing threshold values and 

applying SHIFRAK on validation set embryos (Fig. S6a-ii, S6b-ii). Finally, we compared KID-

classification of SHIFRAK with KIDScore-D39. Both classifiers were applied on the same 

uncontaminated validation set embryos at 66 hours from fertilization. Satisfyingly, SHIFRAK 



generated a better prediction of embryo implantation (AUC 0.65 versus 0.59), which was 

automated and independent of morphokinetic events. 

Classification by SHIFRAB and SHIFRAK is robust to differences in maternal age 

Throughout the pre-menopause life span of the woman, oocytes are continuously exposed to 

various stress mediators21. Hence, maternal age is an important determinant of female fertility22. 

Based on the SHIFRA database, we performed a broad comparison between the morphokinetic 

statistics of young (age<32) versus aged (age>38) women (Fig. 4a). Based on our database, which 

is over-represented by couples that experienced conception difficulties, the differences between 

young and aged morphokinetic distributions appear to be negligible (Kolmogorov-Smirnov test 

score < 0.06). Moreover, median morphokientic values of young embryos appear to exceed aged 

embryos only starting from the Morula and Start-of-Blastulation events (Fig. 4a). Consistent with 

the overlap in morphokinetic distributions, the fraction of BLASTp embryos out of all BLAST-

labeled embryos is independent of maternal age (Fig. 4b-i), yet the fraction of positively 

implanted embryos out of all transferred embryos is four-fold higher in young women (Fig. 4b-

ii). These differences in implantation potential but not in blastulation potential indicate that the 

oocytes of young and aged women that undergo infertility treatments possess the same 

developmental quality but the receptivity of the uterus is compromised in aged women. Finally, 

we compare between the ROC curves of SHIFRAB and SHIFRAK at 72 hours and at 90 hours (Fig. 

4c-d). The AUC’s of young and aged embryos were comparable with the prediction of the entire 

pool of BLAST-labeled (Fig. 1e-i) and of KID-labeled (Fig. 5c-ii) embryos. This excludes the option 

that SHIFRAB and SHIFRAK are skewed towards young or aged embryos. It is thus demonstrated 

that both SHIFRAB and SHIFRAK are robust to differences in maternal age.   



 

Figure 4| SHIFRAB and SHIFRAK classifiers are robust to differences in maternal age. (a) 
Morphokinetic comparison between young (age<35) and aged (age>38) embryos show negligible 
differences (Kolmogorov-Smirnof test score < 0.1). The fraction of embryos that reached 
blastulation (b-i) is very similar between the two age groups (0.78 and 0.77 accordingly) non the 
less (b-ii), the fraction of KIDP is scientifically higher for embryos with <35 maternal age (0.40 and 
0.1 accordingly). ROC curves of (c) BLAST prediction by SHIFRAB and (d) KID prediction by SHIFRAK 
are shown for young (age<35) and aged (age>38) women at , (i) 72 hours and (ii) 90 hours.  

 



 

Figure 5 | BLAST and KID deep learning classifiers share common features correlated with 
morphokinetic information entropy. (a) Each column shows the morphokinetic state distribution 
of embryos at specific time points ranging between 60 and 90 hours from ICSI. Probability of 
morphokinetic events are color coded. Most probable state propagates from 8-cells (60 to 66 
hours) to 9-cells (68 to 84 hours) and to Morula (86 to 90 hours). (b) Information entropy (green 
symbols) is calculated based on the morphokinetic state distributions (a). A score of the goodness 
of classification, γ, is plotted for SHIFRAK and SHIFRAB (gray symbols, see Methods). From 66 
hours onward, the information entropy and the goodness of classification contours share a 
stepwise trend increasing at 72 and at 84 hours. (c) Scores obtained by SHIFRAK are plotted as a 
function of SHIFRAB for embryos that are BLAST and KID co-labeled. Top and right panels show 
the corresponding histograms, respectively. BLASTn/pKIDn/p embryos are abbreviated by Bn/pKn/p. 
(d) Average SHIFRAB (i) and SHIFRAK (ii) scores are shown. BnKn embryos are scored lowest and 
BpKp embryos are scored highest by both classifiers. 



 

 

Direct unequal features 

Training of the BLAST and KID classifiers was performed with no specific reference to direct 

unequal cleavage (DUC). Compared with other DUC embryos, DUC1 (namely 𝑡2 = 𝑡3, Fig. S2d) is 

responsible for the most significant decrease in embryo blastulation, implantation and euploid 

rate, and holds the most far reaching clinical implications.23 Therefore, we focus here on the 

classification outcome of DUC1 embryos (Fig. S7a). In the SHIFRA database, there are 580 DUC1 

embryos and 11522 non-DUC1 embryos. Since DUC1 embryos were deselected for transfer, only 

119 DUC-1 embryos were transferred compared with 5652 non-DUC1 transferred embryos out 

of which 17 DUC-1 embryos and 1745 non-DUC1 embryos successfully implanted (KIDP and KIDu 

combined). Therefore, a crude estimation indicates that the likelihood of implantation of DUC1 

embryos is 2.2- lower. Consistent with this low implantation potential, we found that both KIDn 

and KIDp DUC1 embryos obtain low scores by SHIFRAK compared with non-DUC1 embryos (Fig. 

S7b). Evidently, by scoring DUC1-embryos low, SHIFRAK is effectively deselecting these embryos. 

We note that prediction by SHIFRAK takes into account frames acquired during the 12-hours’ that 

precede time of classification (60 to 72 hours). Namely, images of first and second cleavage were 

not included in KID prediction. Hence, DUC1 embryos are deselected by SHIFRAK based on visual 

information that propagated forward by at least two days.  

 

How do SHIFRAB and SHIFRAK work? 

Obtaining insights into how deep learning classifiers function and uncovering the determinant 

visual features is a difficult task. We therefore focused on identifying the time windows that are 

used by the classifiers to predict blastulation and implantation. The probability distributions of 

finding the embryos at specific embryonic states as a function of time is summarized in figure 5a. 

These distributions are complementary to the statistics of morphokinetic events, which 

correspond to the transition between these states (Fig. 5a). For example, at 72 hours most of the 

embryos are found at the 8-cells state whereas morula is the most probable state at 90 hours. To 

quantify the amount of information encoded in each two-hours’ time window, we calculate the 



information entropy based on the probability distributions of the measured embryonic states 

(Fig. 5b). In the case that all embryos are found at a specific state, no information is provided by 

this time window. Consistently, the entropy is zero. Once a few embryos propagate to different 

states, entropy will increase. Maximal entropy is obtained when embryos are equally distributed 

across all possible states. We find that the entropy decreases between 60 and 68 hours and 

increases in a stepwise manner from 68 to 90 hours (Fig. 5b, green line). To obtain insight into 

how visual markers of embryo potential are encoded, we plot the so called goodness of 

classification, 𝛼(𝑡), for both classifiers (Fig. 5b). 𝛼(𝑡) increases in the case that the classifier gave 

a high score to packets of a positive-labeled embryos and low scores to packets of negative-

labeled embryos and vice versa (see Methods). Remarkably, we find that the information entropy 

and the goodness of classification of both SHIFRAB and SHIFRAK show an overlapping trend (from 

66 hours forward), which increases in a stepwise manner at 70-to-72 hours and at 82-to-84 hours 

from fertilization (Fig. 5b).  

To estimate the degree of classification overlap between SHIFRAB and SHIFRAK, we considered 

the embryos that were both BLAST and KID labeled and plotted their classification scores as 

obtained by SHIFRAK as a function of SHIFRAB (Fig. 5c). The positive correlation between SHIFRAB 

and SHIFRAK (Pearson correlation coefficient 0.76) is indicative of common visual features that 

are shared by both classifiers. Importantly, BLASTn-KIDn (BnKn) embryos were scored lower than 

BLASTp-KIDn (BpKn) embryos not only by SHIFRAB but also by SHIFRAK despite the fact that all these 

embryos failed to implant (Fig. 5d-i). Consistently, BpKn embryos were scored lower than BpKp not 

only by SHIFRAK but also by SHIFRAB despite the fact that all these embryos successfully initiated 

blastulation (Fig. 5d-ii). Hence, SHIFRAB is sensitive to implantation potential and SHIFRAK is 

sensitive to blastulaton potential. Taken together, we conclude that visual features are detected 

and shared by SHIFRAB and SHIFRAK. The sensitivity of SHIFRAK to BLAST-labeling cannot be 

attributed to the three subnetworks that had been trained on BLAST-labeled embryos since all 

subnetworks were integrated using an SVM that was trained only on KID-labeled embryos. The 

fact that visual features that are associated with blastulation contribute to prediction of 

implantation and vice versa suggests that an overall embryonic developmental quality is encoded 



by specific visual elements at specific time points, consistent with the overlapping dynamic 

information trends exhibited by SHIFRAB and SHIFRAK discussed above (Fig 5b). 

  



Discussion 

Automated, standardized and accurate classification of embryo blastulation and implantation 

Implementing single-embryo transfer methodology holds the potential of reducing clinical 

complications but maintaining reasonable implantation rates requires means of selecting the 

highest-potential embryos for transfer.25 With respect to a dozen or less embryos typically 

obtained from individual couples, the decision-making process that the physicians are required 

to carry out is complex. Each embryo can be either transferred, frozen, resume incubation or 

discarded. Since the goal is reaching live birth from any embryo, a comprehensive strategy is 

required that includes multiple transfer cycles. Here, we address the first step – scoring the 

developmental potential of individual embryos. We report the development of the first fully-

automated classifiers of embryo developmental competence that are based on deep learning of 

video recordings. The automation of embryo selection offers several advantages with important 

clinical implications. (1) Standardization: SHIFRAB and SHIFRAK provide a standardized platform 

that is invariant across IVF clinics and is independent of human decision making, emotional state, 

and fatigue. (2) Quick and dynamic: Computer-based automated embryo classification is quick 

and can offer a dynamic profile of the developmental potential during incubation. (3) Accuracy: 

SHIFRAK demonstrates higher accuracy compared with KIDScore-D3 (Fig. 2b). We find that 

removing embryos from the training set leads to a decrease in classification performances (data 

not shown), indicating that increasing the number of labeled embryos will further improve 

classification accuracy and robustness. (4) Reducing workload: The clinical staff (specifically the 

embryologists) are often required to dedicate a significant time for embryo evaluation. In this 

regard, SHIFRAB and SHIFRAK can serve as a computer-based substitute. 

 

How is the information about embryo quality encoded in time-lapse imaging? 

Morphokinetic-based classification of embryo blastualtion26 and implantation7,20 confirm that 

the developmental potential of the embryo can be encoded, at least partially, in its temporal 

profile of morphokinetic events. As morphokientic-based classifiers are limited to a discrete 

representation of the embryos, unbiased embryo classification by direct learning of time-lapse 

imaging raises the question of whether additional developmental information is contained within 



other visual dynamic or static features. We address this question using a twofold approach. First, 

we uncover the time windows that are associated with correct classification of positive and 

negative labeled embryos (Fig. 7b). We found that embryo classification both by SHIFRAB and by 

SHIFRAK showed a stepwise trend. Classification accuracy is improved when approaching 72 

hours, which is associated with embryonic genome activation (EGA)26, and when approaching 84 

hours. An insight into the nature of this stepwise trend is obtained by comparison with the 

information entropy kinetics. Remarkably, the information entropy reproduces this stepwise 

trend (from 66 hours onward), suggesting that SHIFRAB and by SHIFRAK are sensitive to embryo 

cleavage events (Fig. 7b). Secondly, we considered the group of embryos that were labeled both 

in terms of blastulation and implantation (Fig. 7c). Since the scores obtained by SHIFRAB are 

higher for KIDP embryos and the scores obtained by SHIFRAK are higher for BLASTP embryos, we 

conclude that BLAST classification and KID classification share the same visual dynamic features 

(Fig. 7d). Taken together, our results suggest that deep learning of BLAST and of KID labeled 

embryos is sensitive to visual dynamic features that are linked with embryo cleavage events and 

are shared by both classifiers.  

 

Clinical implications 

Since deep learning requires a large number of labeled embryos that cannot be provided by 

prospective clinical experiments, we used retrospectively obtained data. In these IVF treatments, 

embryos were preselected for transfer based on morphological and morphokinetic criteria. As a 

result, KIDp, KIDn and KIDu embryos share visual characteristics that are not representative of the 

entire embryo population. Evaluating the clinical contributions of the SHIFRA classifiers thus 

requires a prospective clinical experiment.  

Based on this work, we draw the following clinical implications and discuss two approaches for 

early and late embryo transfers. Without reliable non-invasive classification tools, day-5 transfers 

were introduced in order to screen embryos that fail to reach blastulation.  SHIFRAB and SHIFRAK 

provide alternative means of reaching day-3 SET. In this manner, we prevent prolonged culture 

periods that were implicated with a decrease of embryonic potential as well as avoid risks 

associated with cryopreservation of day-5 expanded blastocysts. We propose combining SHIFRAB 



and SHIFRAK to identify the embryos with the highest developmental potential on day-3. In case 

there are embryos that are scored high, transfer of the embryo with the highest score should be 

considered. The remaining high-score embryos can then be frozen. Low-scored embryos should 

be further cultured, thus enabling the embryologists to discard the ones that become arrested 

prior to blastulation. A second option that this work supports is to perform early day-4 transfers 

(90 hours from ICSI). Relative to 72 hours, we find that the classification performances of SHIFRAB 

(AUC 0.76 versus 0.86) and of SHIFRAK (AUC 0.66 versus 0.76) improve significantly. Since 

blastocyst expansion occurs later, the improvement in identifying high-quality embryos at 90 

hours does not introduce the reported difficulties of freezing blastocysts and involves only short 

periods of prolonged culture (18 hours). Finally, the transition towards automated classifiers 

offer continuous evaluation of embryonic developmental potential, thus providing the physicians 

with additional tools to decide when to transfer the embryos. 

 

 

 

  



Methods 

The SHIFRA database, embryo annotation and QA 

We developed a PostgreSQL database with a front-end website that supports display, query and 

data annotation (Hebrew University IT). Maintenance of the SHIFRA database was outsourced 

(CHELEM LTD) and data curation was performed by a full-time trained embryologist. Anonymized 

time-lapse PDB video files and the corresponding metadata were imported from five hospitals 

across Israel. Data was imported under the approval of the Helsinki ethical committee of the 

Hebrew University and Hadassah medical center  (IRB number HMO -006-20). Morphological and 

morphokientic annotations were performed by qualified and experienced embryologists in each 

IVF department and by a team of trained embryologists in the Buxboim lab adhering to 

established protocols. Quality assurance (QA) of morphokientic annotations was performed 

using randomly selected 277 embryos by a highly trained embryologist (Dr. IHV, Soroka medical 

center, Fig. S1).  

 

Qualification of embryos for deep learning of BLAST and KID labeled embryos 

The qualification criteria for including embryos in the BLAST and KID train/test and validation sets 

are summarized in the following table.  

 BLAST KID 

Set Train/Test Validation Train/Test Validation 

ICSI Yes Yes Yes Yes 

Fresh transfer NA NA Yes Yes 

Discard PGD/PGS embryos Yes Yes Yes Yes 

Two pronuclei Yes Yes Yes Yes 

No dark / misaligned images Yes Yes Yes Yes 

Full morphokientic annotation* NA Yes NA Yes 

* tPNa to final morphokientic state.  

 

Labeling of embryo blastulation 

To identify BLASTn, we detect the embryos whose development is arrested based on the 

temporal distributions of the morphokinetic events and their intervals (Fig. S1a-b). Each embryo 

is represented by the latest morphokinetic state it reached inside the incubator, 𝑀𝑆𝑛, total time 



of incubation measured from fertilization, 𝑡𝑖𝑛𝑐 (Fig. 2b), and time that lapsed from the time of 

last morphokinetic event, 𝑡𝑖𝑛𝑐 − 𝑡𝑛. We represent each embryo by two Cartesian coordinates: 

[𝑀𝑆𝑛, 𝑡𝑖𝑛𝑐] and [𝑀𝑆𝑛, 𝑡𝑖𝑛𝑐 − 𝑡𝑛] as plotted in figures 2a-i and 2a-ii, respectively. The light green 

regions in figure 2a-i correspond to the time windows of each morphokinetic event. To minimize 

the potential impact of statistical outliers, we bound these time windows between the 1st and 

the 99th percentiles of the morphokinetic distributions as measured based on thousands of 

embryos (Fig. 1c, Table S2). Therefore, embryos that are located in the light green regions exhibit 

normal development and can thus hold the potential to proceed in the case their incubation was 

extended. The dark green regions are upper-bounded by the 99th percentile of the next 

consecutive morphokinetic event, 𝑀𝑆𝑛+1. Embryos that are located in these regions reached 

stage 𝑀𝑆𝑛 and did not proceed to the next morphokinetic event but are still within the permitted 

time window for proceeding to 𝑀𝑆𝑛+1. On the other hand, embryos that are located in the red 

regions have passed their time window and are thus arrested in morphokinetic stage 𝑀𝑆𝑛. For 

example, an embryo that was incubated for 96 hours and reached 4-cells state, is arrested and is 

defined as 4-cells positive 5-cells negative (4Cp5Cn).  

A similar statistical analysis is performed to study the temporal distributions of the morphokinetic 

intervals (Fig. 2a-ii). The light green regions, corresponding to the time interval windows, are 

bound by the 1st and 99th percentiles of the time interval distributions (Fig. 1d, Table S3). Embryos 

that are located in the red regions passed their interval time window and are thus arrested in 

morphokientic stage 𝑀𝑆𝑛. For example, an embryo that had reached the 4-cells stage and that 

36 hours have lapsed since this cleavage event without completing the next cleavage, is defined 

4Cp5Cn and is arrested. Adhering to a constringent approach, embryos that were found to be 

developmentally arrested based on the timing of their morphokinetic events or their 

morphokinetic profiles are classified BLASTn. The remaining embryos are classified BLAST-

unknown (BLASTu, Fig. 2c-i,ii). 

 

 

 

 



Preprocessing of embryo video files 

Automated screening empty well images  

We determine if an image contains an embryo or the culture well is empty by applying the 

following algorithm. Horizontal and vertical 3x3 Prewitt operators are applied on the input image 

(Fig. S3a-i). In each pixel, the 𝐿2-norm of the absolute values of both channels is calculated to 

generate a gradient map which is then normalized by the median gradient value. To find the 

boundaries of the circular culture well, we treat each side of the image separately (left, top, right, 

bottom) as illustrated below for the top side of the image. The central fifty columns (columns 226 

to 275) are scanned from top to bottom and the first pixel with value greater than 0.4 is marked 

in each column. Next, the average y-axis coordinate of all fitty marked pixels is calculated. By 

applying these steps also to the bottom, left and right sides we define the rectangular in which 

the culture well is bounded. The boundaries of the well are obtained by fitting a circle inside. 

Then, all the pixels that are located outside the well boundaries are set to zero (𝐼1, Fig. S3a-ii). 

Low gradient levels are removed by setting low-intensity pixels 𝐼1 < 0.2 to zero followed by 

removing ‘salt and pepper’ noise using 10x10 convolution mask (𝐼2, Fig. S3a-iii). The remaining 

objects in 𝐼2 are typically larger than the size of the convolution mask. Under the assumption that 

the embryo is the largest object with the sharpest edges, we set to zero all pixels except of the 

pixels that belong to the highest-energy cluster, namely the object with the maximal integrated 

intensity in 𝐼2 (𝐼3, Fig. S3a-iv). An image is labelled empty if the sum of 𝐼3 pixels is lower than 

8000.  

 

Automated selection of the sharpest focal plane  

The selection of the sharpest focal plane out of all seven z-stacks is performed as described in 

the section above (‘Automated screening empty well images’). The 𝐼3 images are calculated for 

all focal planes and the frame with highest score is selected to be the sharpest focal plane. 

 

 

 



Automated cropping and down-sampling of the ROI’s of embryos 

Automated segmentation of the embryo’s ROI is illustrated in figure S3b. First, a self-similarity 

descriptor (SSIM) is applied on the input image (Fig. S3b-i) to generate a gradient map, 𝐼1. Briefly, 

gradients are calculated at each pixel along eight equally-rotated directions (45o apart) at a 

distance of three pixels away. For each angle, noise is reduced by averaging the gradients over 

3x3 regions centered at distal pixels. Next, the 𝐿2-norm of the all eight directional gradients is 

calculated and the value of each pixel in 𝐼1 is obtained by normalizing by the median SSIM value 

of the entire image. The SSIM depicts and highlights the edges of the well and of the embryo (Fig. 

S3b-ii). Next, we perform a convolution between 𝐼1 and a 256x256 mask of ones. Since 𝐼1 is a 

500x500 matrix, the product of this convolution, 𝐼2, is 245x245 (Fig. S3b-iii). The location of the 

region of interest (ROI) in which the embryo is contained is obtained by the argument of maxima 

(ArgMax) of 𝐼2 (Fig. S3b-iv). Finally, the cropped ROI was down-sampled two-fold biaxially 

(128x128 pixels). 

 

Grouping of frame packets 

Each packet 𝑃𝑛
𝑚 was defined by a binary label, 𝑦𝑚, according to the label of embryo 𝑚 

(BLASTp/BLASTn or KIDp/KIDn) and by a time index 𝑛 of the middle frame (Fig. 3a).  

 

CNN training 

Network architecture 

Network design consisted of three convolution-max pooling layers, followed by two residual-max 

pooling convolution blocks, five residual convolution blocks, and two fully-connected layers (Fig. 

3b). The final fully-connected layer generates six values that correspond to six 12-hours’ time 

windows ranging between 2 to 5 days (packets earlier than 48 hours were included in the first 

time window). Final packet score is chosen out of these six values based on the time index.  

 

Training parameters 



The input of the network was time-lapse video files where each training batch consisted of 𝐾 

embryos. For simplicity, here we describe the training process of 𝐾 = 1. To reach network 

convergence, each embryo was represented by randomly selected 𝑘 packets within a 20 hours’ 

time window such that pairs of packets were separated by no longer than 8 hours. Training set 

embryos were represented using randomly selected packets of all focal planes whereas test and 

validation set embryos were represented using packets only of the sharpest focal plane (see 

above). Each embryo was thus represented by an object of size  128x128x5x𝑘. In practice, we 

used 𝐾 = 8 batch size where single embryos were represented by 𝑘 = 4 packets. Compared with 

500x500x200 pixels for a typical video file, the size of the input object was decreased by 150-fold 

as part of preprocessing.  

 

Modified soft hinge loss 

The weighted soft hinge loss of embryo 𝑚 is calculated based on all of its 𝑘 packets:  

𝑙𝑚 = ∑

𝑘

𝑛=1

𝑤𝑛
𝑚𝐿𝑜𝑔(1 + 𝑒−𝑦𝑚∙𝑠𝑐𝑜𝑟𝑒𝑛

𝑚
),  

where 𝑠𝑐𝑜𝑟𝑒𝑛
𝑚 is the packet score and 𝑤𝑛

𝑚 is the adaptive weight: 

𝑤𝑛
𝑚  =  

𝑒𝛾∗𝑠𝑐𝑜𝑟𝑒𝑛
𝑚

∑𝑘
𝑛=1 𝑒𝛾∗𝑠𝑐𝑜𝑟𝑒𝑛

𝑚 

Note that the sum of weights 𝑤𝑛
𝑚 for embryo 𝑚 is 1. 𝛾 is the softness parameter. At the limit 𝛾 →

0, the weight becomes 
1

𝑘
 independent of the scores of the packets. At the opposite limit of large 

𝛾, 𝑤𝑛
𝑚 approaches 1 only for the packet of maximal score. The problem of approaching this limit 

is that it will be increasingly difficult for the network to converge. The batch loss 𝐿 is: 

𝐿 =
1

𝐾
∑

𝐾

𝑚=1

𝑙𝑚 

The CNN weights are thus optimized to minimize 𝐿. Performances were optimized by setting 𝛾 =

5. For a negative embryo (𝑦𝑖 = −1), even if a single packet will obtain a positive score, its weight 

𝑤𝑛
𝑚 will be highest and the loss of the embryo 𝑙𝑚 will be large. As a result, convergence will be 



approached only if all packets of a negative embryo will obtain negative scores. On the other 

hand, one packet with a high positive score is sufficient for obtaining a small loss for a positive 

embryo (𝑦𝑖 = +1). For these embryos, the packets with low scores will have small weights and 

the packet with the highest score will have the highest weight and a small loss will be obtained. 

 

Integrating packet scores into embryo scores 

Embryos were scored based only on the packets that belong to the twelve hours that preceded 

the time of classification. With 18 to 20 min time-lapse intervals, each embryo was thus scored 

based on 36 to 40 packets. We introduced high temporal resolution during the process of 

integrating packets’ scores into an embryo score by dividing the packets from all embryos into 

separate cohorts based on a grid of two-hours’ time windows. Unlike BLAST-labeled packets, 

which obtained a single value by the network, KID-classification involved six subnetworks that 

generated six implantation scores as described in the main text. Hence, we included an additional 

step for integrating KID-labeled packet scores as follows. Within each time-window, a soft SVM 

with a linear kernel was trained on packets of all training set embryos (6 to 8 packets per embryo). 

To integrate packets’ scores into an embryo score, threshold values were introduced and 

optimized for each two-hours’ time window by maximizing the AUC as computed over test set 

embryos. Packets that were scored lower than threshold were discarded. Embryos were thus 

scored by summing up only high-score packets after subtracting the corresponding threshold 

values. In this manner, BLAST-prediction and KID-prediction of embryos of high developmental 

competence were performed.  

 

Calculation goodness of classification  

Let 𝜌𝑛
𝑚 be the score of packet 𝑃𝑛

𝑚 of embryo 𝑚 at time 𝑛. Within a time window 𝑊𝑡, the average 

packet score of embryo 𝑚 is: 

𝜌̂𝑚
(𝑡) =

1

|{𝑛 ∈ 𝑊𝑡}|
∑

𝑛∈𝑊𝑡

𝜌𝑛
𝑚 



Denoting the positively (negatively) labeled embryos by 𝑚+ (𝑚−), the goodness of classification 

of time window 𝑊𝑡 is defined by: 

𝛼(𝑡) =

1
𝑀+(𝑡)

∑𝑀+(𝑡)
𝑚+=1 𝜌̂

𝑚+(𝑡) −
1

𝑀−(𝑡)
∑𝑀−(𝑡)

𝑚−=1 𝜌̂
𝑚−(𝑡)

1
𝑀(𝑡)

∑𝑀(𝑡)
𝑚=1 |𝜌̂

𝑚
(𝑡)|

 

Here, 𝑀(𝑡) is the number of embryos with packets in time window 𝑊𝑡. 𝑀+(𝑡) and 𝑀−(𝑡) 

correspond to positively and negatively labeled embryos, respectively. 𝛼(𝑡) obtains high values 

in the case that positively-labeled packets are scored high and negatively-labeled packets are 

scored low. 
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Supplementary figures 

 

Figure S1 | High-resolution morphokientic distributions obtained based on thousands of 
embryos and validated by quality assurance. (a) Morphokinetic distributions show partial 
temporal separation between first (tPNf-t2), second (t3-t4) and third (t5 to t8) cleavage cycles. 
(b) Compared with the dynamics within each cell cycle, distributions of consecutive intervals 
show slow transition between cell cycles. (c) Quality assurance (QA) of morphokinetic annotation 
was performed by an expert and experienced embryologist based on established protocols. 
Histograms of the differences between SHIFRA annotations and QA measured for a 
representative subset of embryos (277 embryos). (d) Standard deviations of the morphokinetic 
differences are shown. Note that time-lapse intervals are 20 min.  



 

 

Figure S2 | Labeling of blastocyst-negative (BLASTn) embryos. (a-i) Phase diagram separating 
between the embryos (blue dots) that have the capacity to proceed further to the next stage in 
their preimplantation development (green regions) and the embryos that are arrested at the 
specified stage (red region) based on their incubation time (𝑡𝑖𝑛𝑐) and their final developmental 
stage reached inside the incubator. The morphokinetic time windows are marked light green, 
bounded by the measured 1st percentile (bottom dashed line) and 99th percentile (middle dashed 
line) of morphokinetic distributions (Fig. 1c). Top dashed line marks the 99th percentile of the 
next morphokientic event. (ii) Phase diagram based on the morphokinetic intervals that lapsed 
from time of most advanced morphokinetic stage that the embryos reached (𝑡𝑛). Light green 
regions mark the time windows of morphokinetic intervals, bounded by the 1st percentile 
(bottom dashed line) and the 99th percentile (top dashed line) calculated based on morphokinetic 
interval distributions (Fig. 1d). Embryos that appear in the red region of either i or ii are labeled 
BLASTn. Distributions of (b) embryo video length and (c) most advanced morphokinetic state of 
BLAST-labeled embryos (color coded, right bar). The SHIFRA database consist of 4522 BLASTp and 
1489 BLASTn embryos.  



 

Figure S3 | Embryo transfer and implantation statistics. (a) Embryos are transferred to the 
uterus on days 2, 3, 4, and 5. (b) Number of (i) BLAST- and (ii) KID-labeled embryos decrease with 
incubation time. The number of KIDp and KIDn embryos decreases fast in correlation with time of 
embryo transfer (shown in a). (c) The median morphokinetic trajectories of (i) embryos that were 
arrested at 4-cells stage (4 cell-positive 5 cell-negative; 4Cp5Cn) and embryos that were arrested 
in 8-cells stage (8Cp9Cn) are compared with BLASTp embryos, and (ii) KIDp versus KIDn embryos 
demonstrating complete overlap.  

 



 

 

Fig S4 | Screening empty well images, defining sharpest focal plane frame and cropping embryo 
ROI: (a) Empty well images are detected as illustrated here for a 3-cells input image. A gradient 
map is calculated, the boundaries of the well are segmented and external pixels are set to zero 
(𝐼1). After setting low-intensity pixels to zero and removing noise via smoothing (𝐼2), the largest 
object which is the embryo is segmented (𝐼3). Images are set empty if the integrated intensity of 
𝐼3 is lower than a threshold intensity 8000. The sharpest focal plane frame is defined by the 
maximal integrated intensity. (b) Embryo segmentation is demonstrated for a 2-cells embryo 
input image. An SSIM descriptor generates a gradient map (𝐼1). Next, a 256x256 pixels 
convolution mask is applied, which highlights high-gradient regions (𝐼2). Based on the texture of 
the cytoplasm and the surrounding zona pellucida, the coordinate of the ROI mask which contains 
the embryo (cropped ROI) is obtained at the maximal intensity pixel of 𝐼2. 

 



 

 

Figure S5 | Characteristics of the SHIFRAB classifier. (a) Overlapping ROC curves of the train, test 
and validation sets indicates lack of overfitting. (b) Positive and negative predictive values (PPV 
and NPV) are plotted as a function of the classifier's threshold at 72 hours. (c) Confusion matrix 
at classifier threshold of 40.7 accounts for PPV=0.9 and NPV=0.33, thus demonstrating clinically-
relevant classification performances by SHIFRAB at 72 hours. 

 



 

Figure S6| Characteristics of the SHIFRAK classifier. PPV and NPV are plotted as a function of 
threshold at (a) 72 and (b) 90 hours. The confusion matrices illustrate SHIFRAK performances at 
the following threshold values: (a-ii) 77. (b-ii) 110. 

 



 

Figure S7 | DUC1 embryos are deselected by SHIFRAK. (a) First direct unequal cleavage (DUC1) 
defines the direct cleavage of the first cell into three cells. (b) DUC1 embryos are scored low 
relative to non-DUC1 embryos by SHIFRAK. This is true for KIDn and KIDp embryos. Due to their 
small number, analysis included all DUC1 embryos in the SHIFRA database compared with 
validation-set non-DUC1 embryos. P-value could not be evaluated for KIDp embryos due to the 
small number of DUC1 embryos.  
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Abstract 

Objective: To validate implantation prediction models using artificial intelligence algorithms 

(AI) to compare results from morphology assessment data, automatic morphokinetics events 

evaluation or combination of both data in a retrospective multi-center study. 

Design: Retrospective cohort study 

Setting: Three University-affiliated IVF centers 

Patients: This study included 36561 embryos’ development videos obtained from time-lapse 

incubators between 2014 – 2019.  

Intervention: None 

Main Outcome Measure (s): The automatic morphokinetic evaluation tool was trained on 

36561 annotated embryo development videos. Morphokinetic annotation and morphology 

evaluation of 6938 embryos with known implantation data (KID) were used to train and test KID 

positive (KID+), an AI algorithm for implantation prediction. The training set consisted of 6363 

embryos (1078 KID+ and 5285 KID-negative (KID-). The blind test set consisted of 575 embryos 

(171 KID+ and 404 KID_). The embryos were scored for implantation potential by KID+ based on 

automatic evaluation of morphokinetic and morphology data. We compared our combined 

morphokinetic and morphology model to models that only take in morphokinetic events or the 

last frame of embryo development.  

Results: In this study we demonstrated a machine learning algorithm that automatically 

annotates embryo morphokinetic events (r2=0.95). Incorporation of these estimated 



annotations into a CNN algorithm revealed a robust implantation prediction tool with an area 

under curve (AUC) continuously improving every hour from 30 to 116 hours post insemination, 

reaching a maximal AUC of 0.65 at 116 hours.  However, analysis of the last frame of the 

embryo development after morula stage showed better prediction with AUC of 0.68 at 116 

hours. Combining both algorithms revealed that morphokinetics annotation added value until 

the start of blastulation (around 90 hours following insemination). After the start of 

blastulation, the combined tool was similar to morphology alone with AUC of 0.68 at 116 hours.  

Conclusion: Assessment of blastocyst morphology is sufficient for most of its competence 

evaluation. However, prediction at cleavage stage is better when incorporating morphokinetic 

data into morphology evaluation. 

Keywords: Artificial intelligence, embryo selection, time-lapse image, morphokinetics 

annotation, blastocyst morphology 



Introduction 

The goal of fertility treatment is to deliver a healthy baby. Multiple embryo transfer was 

common practice to increase the pregnancy rate but subsequently also increased multiple 

pregnancy prevalence and the complications associated with multiple pregnancies. Multiple 

pregnancy increases the likelihood for preterm deliveries and consequently exposes the 

newborn to prematurity complications, such as intraventricular hemorrhage, respiratory 

distress syndrome and necrotizing enterocolitis [1]. Hence, the way to reach singleton 

pregnancy is to adopt the policy of elective single embryo transfer [2]. However, the poor 

predictive power of existing tools to select the most viable embryo encourages us to transfer 

more than one embryo to achieve a reasonable pregnancy rate. Therefore, a robust non-

invasive predictive tool for embryo selection is mandatory. 

Better  methods for assessing embryo quality have been a long-term goal in assisted 

reproductive technology (ART). Morphology grading, namely the Gardner score, is a non-

invasive method and routinely used in clinical practice for blastocyst selection [3]. The transfer 

of the top scoring blastocyst has been shown to achieve the highest implantation rates [4, 5]. 

However, morphology grading has been known to have significant intra- and inter-observer 

variability [6].  

In recent years, time-lapse incubators (TLI), which image the embryo every 15 – 20 minutes, 

entered in-vitro fertilization labs and clinics [7]. TLI decrease the work burden on embryologists 

by eliminating the need to remove the slides from the incubator to observe embryo 

development and grade. Embryologists can review the generated movie and navigate back to 

specific developmental events to check for morphokinetic or morphological abnormalities, such 



as direct unequal cleavage (DUC) or reverse cleavage, phenomena observed in low implantation 

potential embryos [8]. Moreover, TLI have enabled morphological and morphokinetic event 

data (timing of every milestone in embryo development) to be captured, thus presenting the 

opportunity to develop an algorithm to predict embryo implantation potential [9-11].     

Several algorithms that analyze embryo kinetics and morphology have been proposed to 

predict blastocyst formation [12], genetic chromosomal disorders [13, 14] and implantation 

potential [15],. Some analyze morphology and morphokinetic parameters from time lapse 

images [13, 16, 17] but require manual annotation, thus are associated with intrinsic user 

variability [6, 16].  

Deep Convolutional Neural Networks (CNNs) are deep learning algorithms that can take in an 

input image, assign importance to various features in the image, and differentiate one from the 

other. In particular, CNNs can exploit both spatial and temporal information, possibly at the 

same time, using 3D convolutional layers or recurrent networks [17]. CNNs have led to state-of-

the-art results in a variety of problems, such as image classification and segmentation, object 

detection, video processing, speech recognition and natural language processing [18, 19]. 

Inspired by how the human brain works, deep CNN uses multiple feature extraction stages that 

can automatically learn abstracted representations from the data. The growing availability of 

data and advances in computing power have accelerated research in CNNs. 

As mentioned above, embryo prediction tools are divided into morphokinetic-based 

algorithm [20] or morphological-based single image recognition [21, 22]. In this work, we aim to 

compare algorithms for implantation prediction based on morphology alone, morphokinetics, 



or the combination of both. We investigated how the morphology information extracted from 

the last frame of a developmental video compares to the information extracted from the 

course of the entire development, which includes morphokinetic events, can be used to predict 

implantation. 

 

Method 

Data collection 

Clinical and IVF laboratory data was collection from three units including Hadassah Hebrew 

University Medical Center Ein-Kerem and Mt Scopus campuses, , and New York University 

Langone Prelude Fertility Center. Each unit uses their own controlled ovarian hyperstimulation 

protocols, although most of the cycles were antagonist protocols. After fertilization, the 

embryos entered into an EmbryoscopeTM (Vitrolife, Copenhagen, Denmark), a TLI that captures 

a seven-layer z-stack images 15 µm apart at each time point every 15 to 20 minutes. The 

patient pool was heterogeneous and included patients with a variety of infertility indications. 

Patients with preimplantation genetic testing (PGT) cases were excluded due to the fact that 

PGT requires the embryo to be removed from the incubator for the biopsy, which may 

interrupts the subsequent morphology and morphokinetics of embryo development. The study 

was approved by the Investigation Review Board of Hadassah Hebrew University Medical 

Center (IRB number HMO -006-20). 

 



Embryo classification and morphokinetic annotation  

The outcome of transferred embryo was divided into 3 groups: 1. KID-positive: the numbers 

of gestational sacs equal the number of embryos transferred. 2. KID-negative: none of the 

embryo transferred reached a gestational sac stage. 3. KID unknown: The number of gestational 

sac (at least one) is lower than the number of transferred embryos. Embryonic manual 

annotation was carried out by three expert embryologists, and the definition of each 

developmental event was based on common nomenclature [23].  

Preprocessing  

The input data of each embryo consists of a series of z-stack images. The nth image of 

embryo i is denoted by {𝐼𝑛
𝑖 }. Embryo i consists of 𝑁𝑖 images and each image 𝐼𝑛

𝑖  is a 3-

dimensional file of size 500x500x7 pixels (corresponding to 7 focal planes). 

The spheroid culture well is centered in each image (500x500 pixels), but the embryo itself can 

be found anywhere inside the well (430x430 pixels). In order to minimize systematic variation 

between images, we cropped the region of the embryo inside the well. This is performed using 

a CNN model that recognizes and segments the embryo inside an image. The CNN architecture 

is outlined in Fig 1A. Finally, the segmented embryo is cropped from the original image and 

resized to an 128x128 pixels image. 

 

 

 



Deep learning for automatic annotation  

The Morphokinetic State (MS) is defined as one of the following 15 states namely zygote, time 

of pronuclei appearance (tPNa) and fading (tPNf), time of  2 distinct cells (t2) to 9 cells and 

above (t9+), time to morula (tM), time to Start Blastulation (tSB), time to Blastocyst (tB) and 

time to Expanded Blastocyst (tEB). 

The label of an image with morphokinetic state k is denoted by 𝑦𝑘 , 𝑘 = [1. . .15].  

A CNN model is first trained to classify each image by its respective morphokinetic state. 

Namely, the training data consists of pairs of {𝐼𝑛
𝑖 , 𝑦𝑛

𝑖 } where 𝐼𝑛
𝑖  denotes an embryo cropped 

image at size 128x128 pixels of embryo i taken at time n, and 𝑦𝑛
𝑖 denotes its morphokinetic 

label.  The model accepts the image 𝐼𝑛
𝑖 and outputs the estimated morphokinetic state 𝑦𝑛

𝑖̂ . This 

learning is performed by minimizing the multi-class cross entropy loss function. The CNN is 

implemented by the commonly used ResNet50 architecture which outputs a vector with 15 

dimensions (𝑠𝑛) populated with the probability that the input image exists in each state (Fig. 

1B). Morphokinetic annotations are defined by the start of each of the morphokinetic states. To 

estimate the annotations given the per-frame soft probabilities, we used dynamic 

programming. At each time n and for each state k, the best paths at time n of the states { 𝑘 -1, 

𝑘 } are compared. The best path of the 𝑘-th state at time 𝑛 +1 is the path with the highest score 

at time n, concatenated with the state 𝑘 at time +1. The new path score is comprised of the 

best path from the { 𝑘, 𝑘 -1} states score and the prediction score at time 𝑛 +1 of the 𝑘-th score 

(𝑠𝑘
𝑛+1).  

 

Implantation prediction based on morphokinetic annotation 

To predict implantation outcome based on the estimated morphokinetic annotations, we use 

a simple Neural Network (NN) that accepts the estimated morphokinetic vector. The NN 

consists of six consecutive dense layers, followed by a scalar output layer, which represents the 



implantation probability. The training data consists of a pair of  {𝑇𝑛
𝑖, 𝑦𝑖}, where 𝑇 denotes a 15 

dimensional vector with the estimated annotations from all images till time n (where inf 

denotes annotations that didn’t appear up to time n) and 𝑦𝑖 = {1, −1} denotes the label of 

embryo i corresponding to KIDp/KIDn. The architecture of the NN is given in Fig 1C. 

Implantation prediction based on a single image 

Here, implantation prediction is obtained from single images rather than the morphokinetic 

vector. We use a CNN that accepts a single image to predict implantation score. The training 

data consists of a pair of {𝐼𝑛
𝑖 , 𝑦𝑖}, where 𝐼𝑛

𝑖  is the cropped image of embryo i  taken at time n, 

and 𝑦𝑖 remains as defined above. The CNN is implemented by ResNet50 architecture as 

illustrated in Fig 1D. 

Implantation prediction based on annotations and single image 

We combine the two basic morphokinetic and morphological models into a single network 

that is trained simultaneously. The network accepts both images and morphokinetic 

annotations and outputs the predicted implantation probability. Training data consists of 

{𝐼𝑛
𝑖 , 𝑇𝑛

𝑖 , 𝑦𝑖}, all of which are as defined above. The architecture of this network is simply 

obtained by the composition of both basic architectures presented in Fig 1E. We did not 

incorporate patients ' age into the algorithm in order to assess the contribution of morphology 

or morphokinetics on implantation prediction without the bias of age. 



 

Fig 1: (A) Embryo segmentation CNN: Each image (500x500 pixels) is resized to 128x128 pixels 

and fed to a network with U-Net architecture. The output is a binary pixel-wise mask of the 

embryo which is then bounded by a rectangle. Finally, the cropped image is obtained by 

cropping the embryo part from the original image and resizing to 128x128 pixels. (B) Embryonic 

morphokinetic classification - A Cropped image is fed to ResNet50 CNN. The output is a 15 

vector with the probabilities to be in each state. Finally, the estimated morphokinetic state is 

obtained by argmax over the probabilities output vector. (C) Implantation binary classification 

based on morphokinetic annotations - An input estimated annotations are processed by 6 

dense layers to yield implantation probability. (D) Implantation binary classification based on 

single images. An input image is processed via a network with ResNet50 architecture to yield 

implantation probability. (E) Implantation binary classification based on integrating both 

morphokinetic annotations and morphology models.  

 



Results 

Data collection and manual annotation 

The embryo development videos were collected from July 2014 until December 2019 from 

three IVF clinics. Three senior embryologists supervised the annotation of 36561 embryos. The 

average age of women included in this database was 33.1±6.0 years (table 1). Data on 

implantation results was known for 6938 embryos with 1249 KID-positive embryos and 5689 

KID-negative embryos.  

 

Automatic annotation  

All 36561 of the annotated embryos were used in this study with 34132 embryos for training 

and 2429 embryos for testing. Figure 2 illustrates the predicted annotation compared to the 

manual annotation of 15 morphokinetic events from the zygote stage to the time of expanded 

blastocyst. The overall coefficient of determination was r2=0.95. The values of coefficient of 

determination were higher for events that have clear time-points (e.g. tPNf, t2, t3) compared to 

events that have looser definitions and have higher inter-observer variation (e.g. tPNa and tM). 



 

Fig 2: Scatter plot of concordance between automated predicted annotation and expert’s 

manual annotation of 15 morphokinetic events. The coefficient of determination (r2) of each 

event and summary of the overall prediction of the model is showed in the table. tPNa- time to 

pronuclei appearance; tPNf- time to pronuclei fading; t(N)- time to cleavage of N discrete cells; 

tM- time to morula; tSB- time to start of blastulation; tEB- time to expanded blastocyst. 

 

Comparison of morphokinetics to morphology  

The database of KID embryos was divided into a training dataset composed of 6363 embryos 

and a testing dataset composed of 575 embryos (table 1).  

 

 

 



Table 1: The distribution of KID embryos in training and test datasets 

  Total  Total Train Test 

 Age  N total KID+ KID- KID+ KID- KID+ KID- 

Clinic 1 32.8±5.9 28485 4359 882 3477 776 3357 106 120 

Clinic 2 33.0±7.0 1626 667 61 606 42 495 19 111 

Clinic 3 34.6±5.8 3562 1739 198 1541 172 1379 26 162 

Clinic 4 38.1±4.4 2888 173 108 65 88 54 20 11 

Total 33.1±6.0 36561 6938 1249 5689 1078 5285 171 404 

 

Note: KID, known implantation data; KID+, KID positive; KID-, KID negative 

 

We compared the predictive ability of the three models (morphokinetic alone, morphology 

alone and combination of both) using area under the curve (AUC) calculations. We continuously 

evaluated AUC from 30 to 116 hours as shown in Figure 3A. The three models demonstrated 

increased predictive ability as time increased. The algorithm that assessed both morphokinetic 

and morphology was able to predict implantation more accurately with a higher AUC until 90 

hours following insemination, than the algorithm that only considered the last frame. However, 

after 90 hours, the combined morphokinetic and morphology algorithm had a similar predictive 

ability when compared to the algorithm that only considered the last frame. Adding discarded 

embryos to the dataset significantly increased the AUCs of the three models (Fig. 3B). 



 

Fig 3: Comparison of the prediction (area under curve - AUC) of the three models 

(morphokinetic alone, morphology alone and combination of both) continuously from 30 to 116 

hours of known implantation data embryos (A) or with discarded embryos (B). M_ph- 

morphology model, M_k-morphokinetic model, M_{ph+k}- combined morphology and 

morphokinetic model.  

 

 

 

 

 

 

 

 

 

 



Discussion 

In this study, we demonstrated an algorithm capable of automatically annotating key 

embryo developmental events. Incorporation of those estimated annotations into a CNN 

algorithm revealed a robust implantation prediction tool that continually improves every hour 

from 30 to 116 hours post insemination with a maximal AUC of 0.65 at 116 hours. However, 

analysis of the last frame of the embryo development video after the morula stage showed 

better prediction ability with AUC of 0.68 at 116 hours. When both algorithms are combined, 

we discovered that the morphokinetics annotation added value to morphology until the start of 

blastulation (around 90 hours). After that stage, the combined tool was as effective as the 

morphology alone algorithm with AUC of 0.68 at 116 hours. 

Embryo evaluations involve two tasks: implantation prediction and embryo ranking. Most 

studies incorporate patient age into the algorithm which yield improved predictive ability [24, 

25]. However, age has such a significant effect that it may mask the effects of morphology and 

morphokinetic analysis when predicting embryo implantation potential. As a result, 

incorporation of an algorithm that includes age into the clinical setting may be a disadvantage 

because in practice, the task is to rank embryos for a specific patient with a constant age. 

Therefore, in this study we wanted to isolate morphology and morphokinetic assessments and 

understand their contributions to implantation prediction. Thus, we have excluded age from 

the combined morphology and morphokinetic algorithm with the trade-off of having lower 

AUCs.  



For the three models, morphokinetic, morphology, and combined morphokinetic and 

morphology, we assembled the implantation prediction AUC results as continuous time-points. 

An interesting pattern observed in all three of the models was an increase in AUC values until 

the first hours of day three, followed by a plateau from t8 that lasted until the early compaction 

stage. For all three models, the AUC values increased at the start of the blastulation stage and 

was sustained throughout blastocyst progression; this effect was most prominent in the 

morphology algorithm. This pattern represents the inherent challenge of evaluating 

morphology and morphokinetics of the embryonic compaction stages due to the lack of 

objective landmarks for annotation. This finding is consistent with previous studies that 

demonstrated the ability of tSB [26, 27], tEB and tB [28, 29] to predict implantation and the 

limitations of using morphokinetic parameters associated with the compaction stage. 

Moreover, these findings align with the scarce publication on morula morphology and 

implantation prediction [30]. To the best of our knowledge, this is the first study to show 

implantation prediction potential continuously by time (in hours). 

A review by Reignier et al. reported the predictive value of morphokinetic parameters for 

embryo ploidy status. This comprehensive study and a study by Zaninovic et al. [31] showed 

that though the morphokinetic parameters differed significantly between aneuploid and 

euploid embryos, there is insufficient evidence for routine TLM use for embryo ploidy 

assessment. Another study evaluating morphology and morphokinetics parameters and ploidy 

status found no correlation between early stage parameters (cleavage stage) and ploidy status 

but did find a correlation between blastocyst morphology and late morphokinetics (from start 

of blastulation) parameters and ploidy status. However, the overlap between euploid and 



aneuploid parameters was too big to define a prediction model [32]. By evaluating the 

algorithms in a continuous way, we overcame the previously demonstrated hurdles associated 

with blastocyst stage morphokinetic evaluation. We were able to develop a robust prediction 

model capable of evaluating morphology and morphokinetic parameters at all stages of embryo 

development. We have demonstrated the strengths and weaknesses of the morphology only 

and morphokinetic only algorithms and have shown that to achieve the best predictive 

algorithm, future prediction tools should incorporate both parameters.  

In summary, this is the first fully automated morphology and morphokinetics machine 

learning model that evaluates implantation prediction over time. We have demonstrated that 

predictive power increases as development time increases and evaluating both morphology and 

morphokinetic parameters increased predictive power.   

  



References 

1. D'Alton, M. and N. Breslin, Management of multiple gestations. Int J Gynaecol Obstet, 
2020. 150(1): p. 3-9. 

2. Grady, R., et al., Elective single embryo transfer and perinatal outcomes: a systematic 
review and meta-analysis. Fertil Steril, 2012. 97(2): p. 324-31. 

3. Gardner, D.K. and W.B. Schoolcraft, Culture and transfer of human blastocysts. Curr 
Opin Obstet Gynecol, 1999. 11(3): p. 307-11. 

4. Balaban, B., K. Yakin, and B. Urman, Randomized comparison of two different blastocyst 
grading systems. Fertil Steril, 2006. 85(3): p. 559-63. 

5. Gardner, D.K., et al., Single blastocyst transfer: a prospective randomized trial. Fertil 
Steril, 2004. 81(3): p. 551-5. 

6. Storr, A., et al., Inter-observer and intra-observer agreement between embryologists 
during selection of a single Day 5 embryo for transfer: a multicenter study. Hum Reprod, 
2017. 32(2): p. 307-314. 

7. Castello, D., et al., How much have we learned from time-lapse in clinical IVF? Mol Hum 
Reprod, 2016. 22(10): p. 719-727. 

8. Zhan, Q., et al., Direct Unequal Cleavages: Embryo Developmental Competence, Genetic 
Constitution and Clinical Outcome. PLoS One, 2016. 11(12): p. e0166398. 

9. Rubio, I., et al., Clinical validation of embryo culture and selection by morphokinetic 
analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril, 2014. 102(5): p. 
1287-1294 e5. 

10. Fishel, S., et al., Evolution of embryo selection for IVF from subjective morphology 
assessment to objective time-lapse algorithms improves chance of live birth. Reprod 
Biomed Online, 2020. 40(1): p. 61-70. 

11. Kaser, D.J. and C. Racowsky, Clinical outcomes following selection of human 
preimplantation embryos with time-lapse monitoring: a systematic review. Hum Reprod 
Update, 2014. 20(5): p. 617-31. 

12. Milewski, R., et al., Morphokinetic parameters as a source of information concerning 
embryo developmental and implantation potential. Ginekol Pol, 2016. 87(10): p. 677-
684. 

13. Reignier, A., et al., Can time-lapse parameters predict embryo ploidy? A systematic 
review. Reprod Biomed Online, 2018. 36(4): p. 380-387. 

14. Swain, J.E., Could time-lapse embryo imaging reduce the need for biopsy and PGS? J 
Assist Reprod Genet, 2013. 30(8): p. 1081-90. 

15. Chen, F., et al., Selecting the embryo with the highest implantation potential using a 
data mining based prediction model. Reprod Biol Endocrinol, 2016. 14: p. 10. 

16. Richardson, A., et al., A clinically useful simplified blastocyst grading system. Reprod 
Biomed Online, 2015. 31(4): p. 523-30. 

17. Tanaka, H., Modeling the motor cortex: Optimality, recurrent neural networks, and 
spatial dynamics. Neurosci Res, 2016. 104: p. 64-71. 

18. He, K., et al., Mask R-CNN. IEEE Trans Pattern Anal Mach Intell, 2020. 42(2): p. 386-397. 



19. Wahab, N., A. Khan, and Y.S. Lee, Transfer learning based deep CNN for segmentation 
and detection of mitoses in breast cancer histopathological images. Microscopy (Oxf), 
2019. 68(3): p. 216-233. 

20. Meseguer, M., et al., The use of morphokinetics as a predictor of embryo implantation. 
Hum Reprod, 2011. 26(10): p. 2658-71. 

21. Saeedi, P., et al., Automatic Identification of Human Blastocyst Components via Texture. 
IEEE Trans Biomed Eng, 2017. 64(12): p. 2968-2978. 

22. VerMilyea, M., et al., Development of an artificial intelligence-based assessment model 
for prediction of embryo viability using static images captured by optical light 
microscopy during IVF. Hum Reprod, 2020. 35(4): p. 770-784. 

23. Ciray, H.N., et al., Proposed guidelines on the nomenclature and annotation of dynamic 
human embryo monitoring by a time-lapse user group. Hum Reprod, 2014. 29(12): p. 
2650-60. 

24. Tran, D., et al., Deep learning as a predictive tool for fetal heart pregnancy following 
time-lapse incubation and blastocyst transfer. Hum Reprod, 2019. 34(6): p. 1011-1018. 

25. Khosravi, P., et al., Deep learning enables robust assessment and selection of human 
blastocysts after in vitro fertilization. NPJ Digit Med, 2019. 2: p. 21. 

26. Mizobe, Y., et al., Synchrony of the first division as an index of the blastocyst formation 
rate during embryonic development. Reprod Med Biol, 2018. 17(1): p. 64-70. 

27. Goodman, L.R., et al., Does the addition of time-lapse morphokinetics in the selection of 
embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil 
Steril, 2016. 105(2): p. 275-85 e10. 

28. Kirkegaard, K., et al., Time-lapse parameters as predictors of blastocyst development and 
pregnancy outcome in embryos from good prognosis patients: a prospective cohort 
study. Hum Reprod, 2013. 28(10): p. 2643-51. 

29. Chamayou, S., et al., The use of morphokinetic parameters to select all embryos with full 
capacity to implant. J Assist Reprod Genet, 2013. 30(5): p. 703-10. 

30. Gardner, D.K. and B. Balaban, Assessment of human embryo development using 
morphological criteria in an era of time-lapse, algorithms and 'OMICS': is looking good 
still important? Mol Hum Reprod, 2016. 22(10): p. 704-718. 

31. Zaninovic, N., M. Irani, and M. Meseguer, Assessment of embryo morphology and 
developmental dynamics by time-lapse microscopy: is there a relation to implantation 
and ploidy? Fertil Steril, 2017. 108(5): p. 722-729. 

32. Minasi, M.G., et al., Correlation between aneuploidy, standard morphology evaluation 
and morphokinetic development in 1730 biopsied blastocysts: a consecutive case series 
study. Hum Reprod, 2016. 31(10): p. 2245-54. 

 

 

  



 

 



 

Solving the "right" problems for effective machine learning 

driven in-vitro fertilization 

Itay Erlich1,2, Assaf Zaritsky3 

1The Alexander Grass Center for Bioengineering, School of Computer Science and 

Engineering, Hebrew University of Jerusalem, Israel 

2Fairtilty Ltd., Tel Aviv, Israel 

3Department of Software and Information Systems Engineering, Ben-Gurion University 

of the Negev, Beer-Sheva 84105, Israel 

 

*Corresponding author: Assaf Zaritsky, assafza@bgu.ac.il 

mailto:assafza@bgu.ac.il


 

Abstract 

Automated live embryo imaging has transformed in-vitro fertilization (IVF) into a data-

intensive field. Unlike clinicians who rank embryos from the same IVF cycle cohort based 

on the embryos visual quality and determine how many embryos to transfer based on 

clinical factors, machine learning solutions usually combine these steps by optimizing for 

implantation prediction and using the same model for ranking the embryos within a cohort. 

Here we establish that this strategy can lead to sub-optimal selection of embryos. We reveal 

that despite enhancing implantation prediction, inclusion of clinical properties hampers 

ranking. Moreover, we find that ambiguous labels of failed implantations, due to either low 

quality embryos or poor clinical factors, confound both the optimal ranking and even 

implantation prediction. To overcome these limitations, we propose conceptual and 

practical steps to enhance machine-learning driven IVF solutions. These consist of 

separating the optimizing of implantation from ranking by focusing on visual properties 

for ranking, and reducing label ambiguity. 



 

Introduction 

One of the major challenges in achieving effective in-vitro fertilization (IVF) is selecting 

the specific embryos for implantation from a cohort of "sibling" embryos from the same 

IVF cycle [1, 2]. The decision as to how many and which embryos to implant back to the 

uterus is driven by the goal of achieving the birth of exactly one healthy baby [3, 4]. Toward 

this goal, clinicians score the visual properties of the developing embryos, alongside non-

visual clinical parameters that are common to all the embryos from the same cohort, such 

as previous IVF outcomes, oocyte age and underweight/obesity to estimate the probability 

of a successful implantation and use these parameters to decide how many and which 

embryos to implant [2, 5, 6, 7, 8] (Fig. 1A). Traditionally, embryo grading and selection 

are subjectively performed in a two-step process where clinicians first rank cohort embryos 

based solely on their visual qualities, as a proxy for embryo implantation potential, and 

then use non-visual clinical properties as a proxy for the embryo-extrinsic factors involved 

in implantation, to decide how many embryos to transfer [9, 7]. Recent advances in 

automated imaging and computation have led to objective and systematic data-driven 

approaches for embryo evaluation, where machine learning models are trained to output a 

score that predicts implantation potential [10, 11, 12, 13, 14, 15, 16]. These scores are then 

used to rank the embryos in an IVF cycle cohort and assist the clinician in making decisions 

regarding which embryos should be transferred. This approach of first using massive 

datasets to train a classifier that predicts retrospective implantation outcomes, and then 

using its prediction to rank embryos for transfer is performed under the implicit premise 

that a score trained to predict implantation potential is suitable for ranking embryos from 

a specific cycle cohort. 

Here, we challenge this axiom. There is a general consensus that non-visual clinical 

properties contribute to the prediction of implantation outcomes [17, 18, 6, 14], but that 

such information is not relevant for ranking embryos in the context of a single IVF cycle 

cohort that share the same non-visual clinical properties. This implies that the optimization 

task solved through machine learning in practice is different from the actual decision made 

in the clinic. Moreover, while successful implantation inherently implies that an embryo is 

of high implantation quality, a failed implantation can be caused by a defective embryo or 

be related to poor maternal clinical factors (such as oocyte age, uterus cavity and receptivity 



 

of the endometrium). This creates uncertainty in the ground truth labels of failed implanted 

embryos that may hamper the ability of machine learning models to generalize well during 

training. It is not clear whether using machine learning models trained with clinical 

information can hamper the selection of the most promising embryos for implantation, and 

what is the magnitude of the errors caused by the ambiguous labels of failed implantations. 

We hypothesized that predicting implantation is not the optimal machine learning strategy 

for solving the embryo-ranking problem because features derived from clinical information 

shared among embryos from the same cohort are not relevant for the ranking task and 

because ambiguous labels confound the optimal ranking. We confirmed this hypothesis by 

comprehensively assessing the contribution of visual embryo properties and clinical 

factors, and by evaluating several criteria for training data selection with less ambiguous 

labels. Finally, we quantified the extent of these non-optimal strategies and propose 

conceptual and practical setups to overcome these limitations by training and applying 

separate classifiers for the different tasks of predicting embryo implantation potential and 

ranking. 

  



 

Results 

Decoupling embryo scoring and ranking using embryo morphology, 

morphokinetics and oocyte age 

One important application of machine learning in IVF clinics is the prediction of successful 

implantation. This task involves training a machine learning classifier using a large number 

of embryos that either succeeded (KID-positive, KID-P) or failed (KID-negative, KID-N) 

to implant back to the uterus (Methods). During classifier training, each embryo is 

represented by its visual properties and non-visual clinical properties that are provided 

together with the implantation outcome as the target label (Fig. 1A). The trained classifier 

receives as input new embryos and predicts a score corresponding to their implantation 

potential; i.e., the probability for successful implantation. The visual embryo properties 

include the appearance of the embryo (termed morphology) and the time it takes to reach 

predefined stages in development (termed morphokinetics). The non-visual clinical 

properties include oocyte age, history of previous IVF treatments, and any other property 

that is shared across all the embryos from the same cohort and thus cannot be directly 

extracted from the specific embryo’s image. The embryo-specific visual properties reflect 

the intrinsic embryo's potential for implantation, whereas the cohort-specific non-visual 

clinical properties correspond to the embryo-extrinsic parameters. Successful implantation 

is heavily dependent on both the embryo-specific visual appearance and on the cohort-

specific non-visual clinical factors. 

We sought to systematically assess the contribution of non-visual clinical properties to 

embryo implantation by comparing machine learning models that rely on visual embryo 

features with or without non-visual clinical properties. Our data were composed of time-

lapse videos collected from 4 clinics: 7904 IVF cycles that included 1314 KID-P and 6485 

KID-N for Train, and 380 KID-P and 637 KID-N for Test (Methods, Table S1). The non-

visual clinical property chosen was the oocyte age, shared among all embryos from the 

same IVF cycle cohort, and is probably the most common embryo-extrinsic property used 

for the embryo implantation prediction task [17]. First, we validated that the KID-P 

embryos were associated with younger oocytes (Fig. 1B). Next, we preprocessed the 

images (Fig. S1) using the morphology-based classifier described in a companion paper 



 

and in the Methods (Fig. S2A). This classifier provides a continuous score reflecting the 

implantation score for each embryo over time with or without the oocyte age as additional 

input to the embryo image (Methods, Fig. S2C). As expected, the classifier that had access 

to oocyte age outperformed the classifier that relied on morphology alone over time (Fig. 

1C). To further verify that the oocyte age contributes to visual properties we devised a new 

classifier that calculated a continuous implantation score from the embryo morphokinetic 

properties (Fig. S2B, Methods). The timing of a set of fifteen hallmark morphokinetic 

events were identified automatically by combining machine-learning and dynamic 

programming (Figs. S3-4). These morphokinetic features were used to train a classifier to 

predict the implantation potential of an embryo based on its developmental history (see 

Methods for full details). Including the oocyte age as an additional feature improved the 

morphokinetic performance over time (Fig. 1D). Although the morphology-based classifier 

was more accurate than the morphokinetic-based classifier, the inclusion of oocyte age 

flipped the classification performance in favor of the morphokinetic model (Fig. 1E). This 

result suggests that the residual contribution of oocyte age to morphokinetic features was 

greater than the contribution of oocyte age to morphological features in the context of the 

implantation classification task. Correlating the temporal derivative of the corresponding 

classifier pairs showed that the temporal trend of the classification performance was more 

similar between the classifier pair that was trained with morphological features (with and 

without the oocyte age) than the classifier trained with the morphokinetic features, thus 

providing further evidence that the common classification-related information between 

morphology features and oocyte age was higher than between morphokinetic features and 

oocyte age (Fig. 1F). Since oocyte age is common to all cohort embryos and thus irrelevant 

for the ranking task, the prediction of the higher performing classifier for the implantation 

potential is not necessarily aligned with the clinician's task of ranking "sibling" embryos 

originating from the same IVF cycle. Hence, although the classifier trained with both 

morphokinetic features and oocyte age outperformed the classifier trained with both 

morphological features and oocyte age (especially in early embryo development), embryo 

morphological features seem more appropriate for the task of ranking high quality 

embryos. Thus, beyond providing a quantitative assessment of the contribution of oocyte 

age to implantation prediction, these results raise the possibility that clinical properties that 



 

are common across embryos from the same cohort contribute to the task of embryo scoring 

toward implantation but are not the optimal properties for the task of embryo ranking. 



 

 



 

 

Figure 1: Decoupling embryo scoring and ranking using intrinsic and extrinsic features. (A) 

Embryo implantation potential relies on the embryo's visual and clinical properties. (B) 

Distribution of implanted (KID-P) versus non-implanted (KID-N) embryos according to oocyte 

age. The average oocyte age of the KID-P (KID-N) embryos was 32.82 (36.74) with a standard 

deviation of 4.93 (6.33). N KID-P = 1694, N KID-N = 7122. (C-D) Comparison of the 

implantation prediction performance (AUC) of models trained with or without the oocyte age 

over time since fertilization. (C) Embryo morphological features (marked with an embryo image). 

(D) Embryo morphokinetic features (marked with “T”). (E) Comparing implantation prediction 

performance: the morphology-based classifier outperformed morphokinetic-based classifier but 

morphokinetic and oocyte age outperformed morphology and oocyte age. (F) Correlation 

between the temporal derivative of the morphology-based classification with and without oocyte 

age (Pearson correlation R = 0.43) versus correlation between the temporal derivative of the 

morphokinetic-based classification with and without oocyte age (Pearson correlation R = 0.27). 

 

Optimizing features for prediction of embryo implantation is not an 

optimal strategy for the task of embryo ranking 

Embryos in an IVF cycle are partitioned into three groups by the clinician based on their 

visual properties. These are composed of 1) transferred embryos - the most promising 

embryos for implantation (Video S1), 2) frozen embryos - other visually high-quality 

embryos that are kept for transfers in future IVF cycles and 3) discarded embryos - those 

selected to be excluded based on their poor visual appearance (Video S2-S4). Discarded 

embryos can be further partitioned into two subgroups: those that reached blastulation 

(termed blastocyst-discarded, Video S2) and those that did not reach blastulation (termed 

underdeveloped-discarded, Videos S3-4). These partitions define the expected ordered 

ranking of embryos based on their visual appearance (Fig. 2A). 

A basic expectation of an embryo-ranking model is to prioritize KID-P over discarded 

embryos. To assess the performance of models trained to predict implantation results (KID-

P versus KID-N) on the task of embryo ranking, we evaluated the average time to live birth 

(TTLB), the number of attempts for embryo transfer from an IVF cycle until a successful 

implantation was reached, where the transfer order was determined by the model’s ranking 

based on its classification score [19]. For example, a TTLB value of 2 implies a cohort 

where the KID-P was ranked second; i.e., one discarded embryo had a higher classification 

score (Fig. 2B). The analysis included embryo cohorts that contained a successful 

implantation (KID-P) and multiple discarded embryos. While it is widely believed that 

transferring a discarded embryo will result in a failed implantation, the implantation 



 

outcome for frozen embryos is not clear-cut; hence, they were not considered in this 

analysis. To avoid the bias of cohorts with different numbers of embryos we compared the 

average TTLB of sub-cohorts consisting of the same number of embryos sampled from the 

full cohorts (Methods). 

Oocyte age contributed to improved implantation prediction (Fig. 1C-D) but this 

information is not relevant for ranking embryos from the same cohort that share the same 

oocyte age. To test the hypothesis that optimizing features for the KID-P versus KID-N 

classification task can deteriorate ranking accuracy, we compared the performance of two 

classifiers that were trained with morphological features with or without the oocyte age. 

We first ranked sub-cohorts of one KID-P and multiple discarded embryos (Methods). The 

average TTLB was at most 1.25 and the inclusion of oocyte age led to less efficient (i.e., 

higher TTLB) ranking, that required on average 1.7 attempts to achieve successful 

implantation (Fig. 2C). The same less efficient ranking with oocyte age was observed for 

sub-cohorts with one KID-P and multiple blastocyst-discarded embryos (Fig. 2D). As 

expected, ranking with blastocyst-discarded embryos constituted a more challenging task 

because the visual defects are less obvious with respect to embryos that did not reach 

blastulation. Similar trends were obtained for morphokinetic features with or without 

oocyte age (Fig. 2E-F). Altogether, these results suggest that selecting features to optimize 

implantation prediction is not the optimal strategy for embryo ranking, specifically when 

these features are clinical properties that are common to all embryos in a cohort. 

 

  

 



 

 

 

Figure 2: Using oocyte age as feature for improving implantation prediction reduced the 

accuracy of ranking embryos from the same cohort. (A) Embryo visual evaluation: KID-P > KID-

N > Blastocyst-discarded > underdeveloped-discarded. KID-N and frozen embryos are not 

considered in embryo ranking evaluations because there is no clear distinction based on their 

visual properties. (B) Time To Live Birth (TTLB) for sub-cohorts of sibling embryos, as a 



 

function of the number of embryos considered for each cohort. Each sibling sub-cohort consisted 

of one implanted embryo and multiple discarded embryos sampled from the full cohort. In the 

example here the number of embryos was 5 and the TTLB was 2 because the KID-P embryo was 

ranked second. (C-D) Morphology-based models (marked with an embryo image) with or without 

oocyte age. (C) Ranking KID-P and all discarded embryos. Number of cycles with n = 2-8 

embryos: 201, 180, 163, 141, 115, 93, 67. Corresponding Wilcoxon signed rank tests on the null 

hypothesis that the two ranking schemes were drawn from the same matched distribution: 

<0.0001, <0.0001, <0.0001, <0.0001, <0.0001, <0.0001, 0.005. (D) Ranking KID-P and 

blastocyst-discarded embryos. Number of cycles with n = 2-6 embryos: 145, 98, 54, 32, 13. 

Corresponding Wilcoxon signed-rank tests: <0.0001, <0.0001, <0.0001, 0.001, 0.074. (E-F) 

Morphokinetic-based models (marked with “T”) with or without oocyte age. Number of cycles 

according to panels C-D respectively. (E) Ranking KID-P and all discarded embryos. Wilcoxon 

signed-rank tests: 0.001, 0.001, 0.001, 0.001, 0.004, 0.004, 0.039. (F) Ranking KID-P and 

blastocyst-discarded embryos. Wilcoxon signed-rank tests: 0.004, 0.004, 0.071, 0.157, 0.655. 

 

KID-N embryos are not the ideal negative labels for the task of embryo 

ranking 

After demonstrating that the features selected for their performance at implantation 

prediction were not optimal for embryo ranking we asked how different training data would 

affect the models’ performance when discriminating high quality from poor quality 

embryos. We defined a set of classification tasks that consisted of discriminating KID-P 

embryos from different subsets of discarded and/or unsuccessful implanted embryos. First, 

discriminating KID-P from all discarded embryos (Fig. 3A). This is an easy classification 

task because discarded embryos are characterized by evident visual defects. The second 

classification task involved discriminating KID-P from blastocyst-discarded embryos (Fig. 

3B). The third involved discriminating KID-P from a subset that included both the KID-N 

as well as the discarded embryos (Fig. 3C). This latter setting is the one most similar to the 

true embryo ranking tasks in the clinic. For each of these embryo subsets we trained six 

morphology-based classifiers (Table S2) and their classification performance was 

compared on different classification tasks (Table S3, Fig. 3A-C).  

Classifiers trained to predict implantation (KID-P versus KID-N) were less accurate than 

the classifiers that were trained with discarded embryos on all tasks (Fig. 3A-C). Inclusion 

of the oocyte age deteriorated the performance to the levels of the classifiers that were 

trained to predict implantation (Fig. 3A-C). Direct evaluation of time to live birth 

established that models trained to predict embryo implantation were not necessarily 



 

optimal for the task of embryo ranking (Fig. 3D-E).  

The KID-P versus KID-N labeled training data was severely limited in size because only a 

small subset of all embryos were selected for transfer and thus discarded embryos 

constitute the vast majority of embryos in IVF clinic in our study (Table S1) and in general 

[13, 20]. To assess the contribution of the extended volume of training data we limited the 

amount of negative labeled training data across the different categories of discarded 

embryos to align with the number of KID-N embryos (Table S2) and demonstrated that 

classifiers trained with discarded embryos outperformed the classifier trained to predict 

implantation even without extra training data (Fig. 3A-E, compare orange and green versus 

red). Additional training data further enhanced the classifiers’ performance (Fig. S5). 

Similar results were obtained when using morphokinetic features (Figs. S6-7). Altogether, 

these results suggest that the elementary requirement of distinguishing poor from high 

quality embryos broke more frequently in the KID-P/KID-N trained classifiers, suggesting 

that KID-P/KID-N are not the optimal training data for the task of embryo ranking. 



 

 



 

Figure 3: KID-N embryos are not the ideal negative label for solving the task of embryo ranking. 

(A-C) Prediction accuracy (AUC) over time since fertilization (higher scores reflect better 

performance). (D-E) Time To Live Birth (TTLB) for cohorts of sibling embryos, as a function of 

the number of embryos in each cohort (lower scores reflect better performance). Each siblings 

sub-cohort consisted of one implanted embryo and multiple discarded embryos from the same 

cohort. Number of cycles corresponding to those reported in Fig. 2. (A-E) All models were 

trained with morphological features. (A) KID-P versus discarded. (B) KID-P versus blastocyst-

discarded. (C) KID-P versus KID-N and discarded. (D) Ranking KID-P and all discarded 

embryos. (E) Ranking KID-P and blastocyst-discarded embryos. 

 

Tradeoffs between training labels ambiguity and specificity in 

predicting implantation and ranking 

In the clinic, embryo ranking within an IVF cycle is exclusively determined by assessing 

the embryos’ visual properties. In contrast, in the machine-learning solution, visual embryo 

properties only provide partial information in the context of implantation prediction. Failed 

implantations can be caused either by defected embryos or by embryo-extrinsic maternal 

clinical properties leading to non-receptive endometrium. This limitation translated to 

ambiguous (noisy) KID-N labels that can mislead the classifier during model training. The 

confidence in discarded embryos annotation, in the context of successful or failed 

implantation is high because the criterion of being discarded is inherently visual and thus 

is not/less affected by external factors. 

To assess the contribution of training data volume and confidence in labels we turned again 

to the task of predicting implantation. We found that including the discarded embryos as 

negative labels in addition to KID-N during training, enhanced the classifier's performance 

in the KID-P versus KID-N classification task (Fig. 4A). Similar results were achieved 

when using morphokinetic features (Fig. S8). These results imply that despite the fact that 

the KID-P/KID-N classifier was trained for the most visually challenging task, the 

availability of extensive data and reliable labels improved classification performance. 

The contribution of training label specificity to a particular classification task was 

demonstrated by the superiority of the model trained with the KID-N and the discarded 

embryos over the model trained with discarded embryos alone (Fig. 4A – blue versus cyan 

correspondingly, both have comparable volume of negative training labels). This result is 

strengthen by the lack of a similar trend in other classification tasks where the addition of 



 

KID-N embryos to the training set did not contribute much to the performance (Fig. 3). 

These data demonstrate the tradeoff between label ambiguity and specificity and reveal 

that the combination of reduced ambiguity (but reduced specificity) in the discarded 

embryo labels along with increased specificity (but increased ambiguity) in the KID-N 

labels led to the most accurate implantation predictions.  

To identify the breaking point between label ambiguity and specificity we simulated a 

gradual deterioration in the negative labels by flipping increasing fractions of positive 

labels to negative labels. This mimics the ambiguity of KID-N labels, where some viable 

embryos fail to implant for extrinsic maternal reasons and are thus mistakenly labeled as 

negatives. We evaluated the optimization problem of training models to discriminate KID-

P from discarded embryos because of the higher confidence in the discarded embryos' 

negative label. This analysis revealed that flipping 10% of the discarded embryo labels was 

sufficient to drop the performance of the KID-P/discarded trained classifier below that of 

the KID-P/KID-N-trained classifier for the tasks of predicting implantation potential and 

ranking, thus underscoring the fact that small fractions of erroneous labels can cause major 

deteriorations in the model’s performance (Fig. 4B-D). Altogether, these results highlight 

the interplay between label ambiguity, label specificity to a particular classification task 

and data volume during training in the context of IVF (Fig. 5). 



 

 



 

Figure 4: Analysis of implantation prediction and ranking performance as a function of negative 

label ambiguity and label specificity. All classifiers were trained using morphological features. (A) 

AUC of implantation prediction (KID-p versus KID-N) over time. Comparison of models trained 

to discriminate KID-P from different sets of negative labels: KID-N, discarded, blastocyst 

discarded, underdeveloped discarded, and KID-N+discarded with or without oocyte age. (B) AUC 

of implantation prediction (KID-p versus KID-N) over time for models trained to discriminate 

between KID-P and discarded embryos with increasing fractions of label ambiguity - flipping 

"KID-P" to "discarded" labels (see Methods). (C-D) Time To Live Birth (TTLB) for models trained 

in panel B. (C) KID-P versus all discarded. (D) KID-P versus blastocyst-discarded.  

 

 

Figure 5: Trade-offs between data volume, label ambiguity and specificity to a particular 

classification task of the negative labels. In our case the specificity was aligned with the embryo 

quality (KID-P > blastocyst-discarded > underdeveloped-discarded, Fig. 2A). Data volume of 

underdeveloped-discarded was the highest (Table S1). Label ambiguity was high for KID-N. The 

positive labels were always KID-P.  



 

Discussion 

There is a consensus that clinical properties that are shared across all embryos within a 

cohort, such as oocyte age, play a key role in determining embryo implantation potential 

but have no effect on embryo ranking within a cohort. It is also well-accepted that some 

KID-N embryos are functional embryos that failed implantation due to embryo- extrinsic 

clinical factors. In this study we took the next conceptual step by demonstrating that 

training classifiers to predict implantation can lead to non-optimal transfer decisions as 

evident by the higher probabilities of preferring obviously visually defective embryos over 

successfully implanted embryos. 

These results raise concerns as to the current common pipeline for machine-learning driven 

IVF that directly imply several practical recommendations. First, training models for 

embryo ranking should focus exclusively on embryo intrinsic features. These may include 

engineered features that measure specific embryo properties such as the appearance of 

pronuclei and fading timing (tPNa, tPNf), the number of pronuclei, pronuclei shape, 

symmetry [21, 22, 23] blastocyst expanded diameter and trophectoderm cell cycle length 

[24], temporal events [25, 26] and/or training deep neural networks on the raw images [13] 

while avoiding embryo- extrinsic clinical factors that are shared by the other sibling 

embryos within the cohort. Second, the ambiguity in the KID-N labels makes implantation 

prediction a sub-optimal optimization problem both in model training as well as in model 

evaluation. Thus training with less ambiguous negative labels, such as discarded embryos, 

can enhance ranking accuracy (and perhaps even implantation prediction). Training with 

less ambiguous negative labels can either be implemented by including discarded embryos 

in the training binary classification tasks, as demonstrated here, and/or by defining 

optimization problems that are more specific for ranking [27]. The current data suggest that 

this approach can be beneficial using discarded embryos as negative labels even though 

discarded embryos are commonly thought as trivially discriminated from high quality 

embryos (low label specificity). Beyond better reflecting the clinician’s decision that 

involves the evaluation of all the embryos in an IVF cycle, another benefit of considering 

discarded embryos lies in the magnitude of data available for training that exceeded five-

folds in the current dataset, and bypasses the biased selection of transferred embryos. 



 

Hence avoiding/reducing the confounding effects of embryo- extrinsic clinical factors and 

ambiguous labels, when solving a ranking problem, as well as using all the available 

embryos to increase training data, are key practical concepts to consider when devising 

machine learning solutions for IVF. We hope that the awareness raised by our findings will 

bring back the traditional two-step process of ranking embryos within a cohort and 

determining how many embryos to transfer based on embryo scoring that approximates 

implantation probabilities, where each of these tasks is optimized independently under the 

appropriate assumptions. 

  



 

Methods 

Experiments 

Data collection and ethics 

The data were collected from four clinics: the Ein-Kerem, and Mt. Scopus campuses of the 

Hadassah Hebrew University Medical Center, the Soroka University Medical Center, and 

the NYU Langone Prelude Fertility Center. After fertilization, the embryos were incubated 

in EmbryoscopeTM (Vitrolife, Copenhagen, Denmark), a time-lapse incubation and 

imaging system that acquires seven-layers of z-stack images 15µm apart at each time point 

every 15 to 20 minutes, where time 0 is defined as the fertilization time. We used the central 

focal plane, which was usually the most focused, for further analysis, on a total of roughly 

360-480 images over a 5-day period for a single embryo. Time-lapse sequences of embryos 

were collected between July 2014 and December 2019 for oocytes aged 23.6-43.6 years 

(Fig. 1B). Embryos that were discarded before 114 hours were excluded from further 

analysis. Human embryo image/video data collected from patients were used in this study 

with institutional review board approval from the Investigation Review Board of Hadassah 

Hebrew University Medical Center (IRB# HMO-006-20). Overall, our dataset contained 

47162 recorded videos of embryos collected from 7904 patients with informed consent for 

research and publication, under an institutional review board approval for secondary 

research use. Table S1 details the data splits between train and test. 

Annotation of embryo clinical quality 

Once the embryos reached the desired developmental stage, single or more embryos from 

a cohort were transferred. For those embryos that were transferred, implantation tagging 

was defined by one of the three possible Known Implantation Data (KID) tags: (i) KID-

positive (KID-P): when all transferred embryos were successfully implanted (Video S1); 

(ii) KID-negative (KID-N): when none of the transferred embryos were successfully 

implanted; (iii) KID-unknown (KID-UK): when the outcome of each transferred embryo 

was uncertain. KID-UK embryos were excluded from further analysis due to their 

ambiguous outcomes. Non-transferred embryos were partitioned into two groups: (1) 

Discarded – embryos that were excluded by the clinician because of defective morphology: 



 

poor morphology [8] or morophkinetics (i.e., slow or halted development). The discarded 

embryos were further partitioned into two subgroups: “blastocyst-discarded” (Video S2), 

embryos that reached blastulation, and “underdeveloped-discarded” (Videos S3-4), that did 

not reach blastulation. Based on these selection criteria we assume that discarded embryos 

fail to implant, and thus used these discarded embryos as a non-ambiguous label to assess 

the model’s performance when ranking KID-P over discarded embryos. (2) Frozen – 

visually proper embryos that were not selected for transfer because other sibling embryos 

from the same cohort were ranked higher. These embryos were frozen for a future transfer 

but were not considered for further analysis because their implantation potential was 

unknown. These partitions defined the embryo clinical ranking of implantation potential 

(Fig. 2A). 

 

Analysis 

Cropping and resizing embryo images 

A simple, low-cost, Convolutional Neural Network (CNN) was trained to segment and 

localize the embryo. The time-lapse incubation produces embryo images of 500x500 

pixels, at several focal planes (typically seven). Since the embryo captures nearly the whole 

image in this case, the segmentation network can accept a downscaled version of the 

original file with a size of 128x128 pixels to enhance efficiency and speed (1 focal plane, 

randomly chosen at train, focal 0 micron at test) and outputs a pixel- wise binary 

classification segmentation mask of size 128x128. A U-NET architecture [28] was used, 

with 4 convolutional layers at each of the downlink/uplinks. Each layer was followed by a 

maxpool/upsample layer, ReLU activation function and batch normalization, where the 

number of features started from 8 and was doubled after each pooling. A diagram of the 

architecture and examples of the segmentation mask are shown in Fig. S1. Finally, the 

bounded embryo was cropped and resized to 256x   256 pixels image 𝐼𝑐𝑖
𝑡 . For notational 

simplicity, 𝑥𝑖
𝑡 denotes the cropped and resized image 𝐼𝑐𝑖

𝑡  in the remainder of this work. 

Training classifier to discriminate KID-P embryos from different subsets of lower 

quality embryos 



 

The data included the KID-P, KID-N, and discarded embryos that were split into 

Train/Validation/Test datasets (Tables S1). Each cohort of sibling embryos was allocated 

to one of the Train/Validation/Test datasets. Transferred embryos in the training set had 

incubation periods ranging from 2 to 6 days, whereas transferred embryos in the test set 

were composed solely of embryos that reached incubation durations of 114 to 120 hours to 

enable comparable results between different time points on the exact same set. This design 

makes the KID-N test set even more challenging compared to the training negative set 

since some of the embryos in the training set were transferred earlier on day 3 but would 

eventually have been labelled inviable, discarded and not transferred if they were allowed 

to incubate until day 5.  

The learning task was to classify an input 𝑥𝑡, where x is a feature representation of an 

embryo and 𝑡 is time, to its ground-truth implantation binary outcome (detailed below). 

Features representations of an embryo included morphology (raw image), morphokinetic 

(timing of a predetermined set of embryo developmental stages) and each of these with the 

oocyte age as an additional feature. Details on each of these feature sets can be found 

below. The loss function used to train all three models was the binary cross entropy loss, a 

special case of equation (2), with K=2. The output of the classifier was a scalar 𝑠𝑡 = 𝑠2
𝑡 −

𝑠1
𝑡 that represent the implantation probability 𝑝𝑡:  

 𝑝𝑡 =
𝑒𝑠𝑡

1+𝑒𝑠𝑡 , (9) 

thus, all the models were of the form 𝐹: 𝑥𝑡 → 𝑠𝑡 , where the feature representation 𝑥𝑡 

changed between models and 𝑠𝑡 is the scalar prediction. 

We trained twelve different classifiers. Six classifier where trained with morphology-based 

features and another six classifiers with morphokinetic-based features. Each classifier was 

trained to discriminate KID-P embryos from different sets of embryos (Table S2): (1) KID-

P vs. KID-N; (2) KID-P vs. underdeveloped ; (3) KID-P versus blastocyst discarded; (4) 

KID-P vs. all discarded; (5) KID-P vs. KID-N and all discarded; (6) KID-P vs. KID-P vs. 

KID-N and all discarded learned with oocyte age as an additional feature.  

The morphology classifier, denoted Mh, received as input a single raw image. The 

morphokinetic classifier, denoted Mk, received a 15-dimensional vector holding the timing 



 

of specific morphokinetic events that were automatically extracted from the time-lapse 

stream. These two classifiers are described next.  

Classification using morphological features 

The morphology-based model 𝑀ℎ accepts single images as input and therefore exploits 

the embryo morphological information to predict implantation. The model was 

implemented using a CNN with a modified ResNet50 architecture [32]. To compensate for 

the drastic morphological changes throughout the embryo developmental process we used 

the ResNet50 base layers with multiple prediction heads {ℎ𝑛}𝑛∈[1...Δ𝑡/2] , each 

corresponding to a temporal window of two hour. Each head consisted of a 128 channel 

dense layer, followed by a scalar output layer 𝑠𝑡 . Fig. S2A depicts the network’s 

architecture. The morphology-based classier was described in a separate manuscript that is 

currently under review and is attached to the submission.   

Automating the timing identification of morphokinetic events with machine-learning 

and dynamic programming  

The problem of estimating the timing of early morphokinetic events was studied recently 

up to four [29, 30], and up to eight [31] cells in the developing embryo, where all the later 

stages were considered as one state. We extended this scope to quantify both early and late 

morphokinetic events. Specifically, we automatically extracted timing of 15 morphokinetic 

events in the embryo development, i.e., the timing of specific morphological changes 

during embryo development identified from the time-lapse images (Fig. S3-4, Video S1). 

These morphokinetic features were then used to train classifiers (Fig. S2B).   

More formally, the morphokinetic state S was defined by the following K = 15 

morphokinetic events: Zygote, Pronuclei (PN) appearance and fading, 1Cell, 2Cell  ,¦3Cell, 

4Cells, 5Cells, 6Cells, 7Cells, 8Cells, 9+Cells, Morula, Start Blastulation, Blastocyst and 

Expanded Blastocyst.  

 𝑆 = {Z, PN, 1C, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9+C, M, SB, B, EB} (1) 

We combined machine-learning and dynamic programming to automated the timing 

identification of each specific morphokinetic event. The learning task was defined as 

classifying an image acquired at time 𝑡, 𝑥𝑡, to its corresponding morphokinetic event 𝑦𝑡 ∈



 

[1. . . 𝐾], where the ground-truth annotations were determined manually by an expert for 

model training and evaluation. The training data were a set of the form {{𝑥𝑖
𝑡 , 𝑦𝑖

𝑡}𝑖∈[𝑁], 𝑡 ∈

Δ𝑡𝑖}, where N was the number of embryos, and Δ𝑡𝑖  was the time interval of the 𝑖-th 

embryo time-lapse incubation stream. 

The morphokinetic model 𝑀𝑘  is a multi-class classifier, trained using a CNN with a 

ResNet50 architecture [32] that accepts a single image 𝑥𝑖
𝑡 and predicts its morphokinetic 

event. 𝑥𝑖
𝑡  represents a cropped and resized image of the centered and resized embryo 

inside its well. The loss function was Categorical Cross Entropy loss [33] defined as  

 𝐿 = −
1

𝑁
∑𝑖∈[𝑁],𝑡∈Δ𝑡

∑𝑘∈𝐾 𝑦𝑖,𝑘
𝑡 log(𝑝𝑘

𝑡 ), (2) 

  𝑝𝑘
𝑡 =

𝑒𝑠𝑘
𝑡

∑𝑘∈𝐾 𝑒𝑠𝑘
𝑡 , (3) 

where 𝑠𝑘
𝑡  denotes the 𝑘-th output of 𝑀𝑘 at time 𝑡. 𝑝𝑘

𝑡  is derived from 𝑠𝑘
𝑡  and represents 

the likelihood (0 ⩽ 𝑝𝑘
𝑡 ⩽ 1) of each image 𝑥𝑡 to be in 𝑘 − 𝑡ℎ state. 𝑦𝑖,𝑘

𝑡  is the one-hot 

encoded ground-truth. Namely,  

 𝑦𝑖,𝑘
𝑡 = {

1, 𝑦𝑖
𝑡 = 𝑘

0, otherwise
 (4) 

We denote by T, the set of K-1 morphokinetic events, defined by the starting time of all 

states in equation (1), except the first zygote, which is trivially defined by the time of the 

first frame 𝑥𝑖
0, ∀𝑖 ∈ [𝑁]. Namely,  

 𝑇 = {𝑡PNa, 𝑡PNf, 𝑡2, 𝑡3, 𝑡4, 𝑡5, 𝑡6, 𝑡7, 𝑡8, 𝑡9+, 𝑡𝑀, 𝑡SB, 𝑡B, 𝑡EB} (5) 

where 𝑡𝑋 denotes the starting time of the X-th event. 

The K size vector 𝑝𝑡 can be thought as a "soft annotation" per each frame. To estimate the 

sequence of morphokinetic events given the per-frame soft annotations, we used dynamic 

programming, where the updating step at time 𝑡 + 1 is given by 

 
𝑄𝑘

𝑡+1 = {𝑄𝑘̃
𝑡 , 𝑘}

𝑘̃ = argmax𝑗∈{𝑘,𝑘−1}{𝑞𝑗
𝑡}

 (6) 

where 𝑄𝑘
𝑡  is a vector of size 𝑡, with the morphokinetic path at each time point 𝑡 ∈ [1, 𝑡], 



 

that ends at the 𝑘-th state at time 𝑡, and 𝑞𝑘
𝑡  denotes a scalar score associated with the path 

𝑄𝑘
𝑡 . Where 𝑄𝑘

𝑡  denotes the optimal path of state 𝑘 at time 𝑡, in the sense that 𝑄𝑘
𝑡  has the 

highest score 𝑞𝑘
𝑡  out of all possible paths that end at the 𝑘-th state at time 𝑡. 

Further, the updated score 𝑞𝑘
𝑡+1 is given by  

 𝑞𝑘
𝑡+1 = 𝑞𝑘̃

𝑡 + 𝑝𝑘
𝑡+1 (7) 

Simply stated, at each time 𝑡 + 1, and for each state k, the optimal paths at time t of the 

states {𝑘 − 1, 𝑘} are compared. The best path of the 𝑘-th state at time 𝑡 + 1 is the path 

with the highest score at time t, concatenated with the state 𝑘 at time 𝑡 + 1. The new path 

score is the sum of the score of the best path from the {𝑘 − 1, 𝑘} states and the score of 

the soft annotations score of the 𝑘-th state at time 𝑡 + 1. Finally, the estimated ME vector 

𝒎 = [𝑚1, 𝑚2, . . . . 𝑚𝑘−1]𝑇 is obtained by travelling over the transitions between states in 

𝑄𝑘
𝑡 . Namely: 

 𝑚𝑘 = 𝑡, if 𝑄𝑘
𝑡 = 𝑘 ∩ 𝑄𝑘

𝑡−1 = 𝑘 − 1 (8) 

Fig. S3 demonstrates the soft annotations and dynamic programming outcomes for 

embryos with different developmental paths. 

The accuracy of the annotation classification was measured by two measurements: (1) the 

average per frame accuracy, calculated as the average the 0-1 loss over frames, and (2) the 

confusion matrix of the morphokinetic events. Fig. S4 presents the confusion matrices of 

morphokinetic events for the morphokinetic classifier before and after applying the 

dynamic programming stage, where rows denote the ground truth annotations, and columns 

the multi-class prediction. The confusion rates were prominent only between adjacent 

events. The first and final events presented relatively low confusion rates, whereas the 

intermediate morphokinetic events were subject to greater confusion rates with adjacent 

events. For example, distinguishing between 5C and 6C is more difficult than between 1C 

and 3C or between the morula and start of blastulation. These results align with annotation 

errors by expert embryologists. One exception is a blastocyst embryo, which the model 

confused with expanded blastocyst. However, this can be explained by the relatively vague 

definition of expansion, which in turn led to an inter (and even intra) variability in 

annotating the exact timing of when expansion began. The confusion matrix for the 



 

dynamic programming decision executed over the multi-class prediction exhibited a higher 

true positive rate for all events and improved average accuracy to 85.5% compared to 

83.6% for the multi-class prediction. This is attributed to the consideration of the full 

developmental trajectory as a global optimization problem. 

Classification using morphokinetic features 

The morphokinetic-based model 𝑀𝑘  accepts as input the estimated ME vector 𝒎, as 

calculated at time 𝑡. To allow the network to recognize embryos that stopped developing 

the time 𝑡 was embedded to input vector. Formally, the input for model 𝑴𝒌 was the K-

dimensional vector 𝒎𝑡, defined as  

 𝑚𝑘
𝑡 = {

𝑚𝑘, 𝑚𝑘 ⩽ 𝑡, 𝑘 < 𝐾
∞ 𝑚𝑘 > 𝑡, 𝑘 < 𝐾
𝑡, 𝑘 = 𝐾

 (10) 

The classifier was implemented with a neural network that consisted of 6 consecutive dense 

layers. The first 5 layers with 256 channels, and the last hidden layer consisted of 128 

channels. Each layer was followed by ReLU activation and batch normalization. The final 

output layer was the scalar prediction. Fig. S2B depicts the network’s architecture. 

Classification using oocyte age 

Oocyte age was previously was reported to be highly correlated with implantation rates 

[18]. We included as an additional input to the morphology- and morphokinetic-based 

models, resulting in two new models denoted by 𝑴𝒉𝒐, 𝑴𝒌𝒐 respectively. The architecture 

of these models was identical to their original models with the addition of an embedded 

layer that accepted oocyte age, digitized by one-hot encoding to one of five possible age 

groups, and outputted 128 features that corresponded to the hot age group. This output was 

added to the last hidden layer of the original model, followed by a dense layer with 128 

channels and a scalar output layer. Fig S2C depicts the network’s architecture. 

Evaluating classifier performance in predicting embryo implantation and ranking 

We evaluated the trained models’ performance with Area Under the Curve (AUC) 

measurement on four different binary classification tasks of discriminating KID-P embryos 

from different sets of embryos (Table S3): (1) KID-P vs. KID-N; (2) KID-P vs. all 



 

discarded embryos; (3) KID-P vs. blastocyst discarded; (4) KID-P vs. KID-N and all 

discarded embryos. This latter setting is most resembling the true embryo ranking in the 

clinic. 

To directly assess the task of embryo ranking we evaluated the average number of attempts 

for embryo transfer from an IVF cycle until a successful implantation was reached, where 

the transfer order was determined by the model’s ranking based on its classification score. 

This measurement is called time to live birth (TTLB) [19]. This analysis included embryo 

cohorts that contained a successful implantation (KID-P) and multiple discarded embryos, 

where transferring a discarded embryo is assumed to result in a failed implantation. Thus, 

a basic requirement from a ranking model is to prioritize KID-P over discarded embryos. 

To avoid the bias of cohorts with different numbers of embryos we compared the average 

TTLB of sub-cohorts consisting of the same number of embryos sampled from the full 

cohorts. For a given number of embryos (N = 2-8) we created sub-cohorts by selecting the 

KID-P embryo and N-1 discarded embryos. We considered two scenarios: (1) calculating 

TTLB for sets of one KID-P and discarded embryos (blastocyst and underdeveloped); (2) 

calculating TTLB for sets of one KID-P and multiple blastocyst-discarded embryos (more 

challenging). 
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Supplementary figures  

Figure S1: Embryo segmentation network. (A) U-NET architecture for embryo localization and 

segmentation. (B) Output masks for different developmental stage embryos. From upper left to 

lower right: 2 cells, 9+ cells, blastocyst, expanded blastocyst. 

 



 

Figure S2: Implantation model architectures. (A) Morphological model 𝑀ℎ, 128x128 input 

image, fed into Resnet50 CNN with multiple prediction heads. Each head corresponds to a 

temporal window of 2 hours. (B) Morphokinetic model 𝑀𝑘, accepts vector 𝒎 with the estimated 

starts of 15 morphokinetic events, and the time from fertilization. A simple neural network with 

eight dense layers was used. (C) The oocyte age was added as input to each model, resulting in 

models 𝑀ℎ𝑜 , 𝑀𝑘𝑜 respectively. The oocyte age was passed through an embedded layer with 128 

output channels. The embedding layer digitized the oocyte age to one of 5 age bins, and outputted 

the corresponding 128 channels. The embedded output was then added to the output of each of 

the basis models. Two dense layers conclude the architecture. 

 

 

 

 

 

 

 

 



 

Figure S3: Predicted morphokinetic events vs. the ground truth (manual) annotations of different 

ending stage embryos: (A) 4Cells, (B) 8Cells, (C) Start Blastulation, (D) Expanded Blastocyst. 

The map represents the network multi-class prediction 𝑠𝑡  of each frame vs. time. The horizontal 

lines are the dynamic programming output path 𝑄𝑘
𝑡 , executed over the multi-class prediction map, 

and the vertical lines are the ground truth (manual) annotations. See Methods for full details. 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S4: Confusion matrix of morphokinetic state classification. Rows denote the ground truth 

annotations, and columns the multi-class prediction. Shown are multi-class model predictions 

before (A), and after (B) dynamic programming.  

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure S5: Additional training data enhances morphology-based models. Prediction accuracy: 

AUC vs. time since fertilization (hours) (A-C), average time to live birth (TTLB) (D-E) for 

morphology- based models, trained with different amounts of discarded embryos (negative 

labels): 10K and 30K, tested over different test sets. Training with more discarded embryos lead 

to better AUCs for all times and over all test sets, but did not change the TTLB. (A) KID-P vs. 

discarded. (B) KID-P vs. blastocyst discarded. (C) KID-P vs. KID-N and discarded. (D) Ranking 

KID-P and all discarded. (E) Ranking KID-P and blastocyst discarded. 



 

 

Figure S6: KID-N embryos are not the ideal negative label for solving the task of embryo 

ranking. Prediction accuracy: AUC vs. time since fertilization (hours) (A-C), average time to live 

birth (TTLB) (D-E) for morphokinetic- based models, trained over different negatives: KID-N, 

discarded, blastocyst discarded, underdeveloped discarded, and KID-N+discarded, tested over 

different test sets. (A) KID-P vs. all discarded. (B) KID-P. vs. blastocyst discarded. (C) KID-P vs. 

KID-N and all discarded. (D) Ranking KID-P and discarded. (E) Ranking KID-P and blastocyst 

discarded. 



 

 

Figure S7: Additional training data enhances morphokinetic-based models. Prediction accuracy:  

AUC vs. time since fertilization (hours) (A-C), average time to live birth (TTLB) (D-E) for 

morphokinetic- based models, trained with different discarded amounts: 10K and 30K, tested 

over different test sets. Training with more negatives lead to better AUCs and yields to shorter 

TTLB over all test sets and times. (A) KID-P vs. discarded. (B) KID-P. vs. blastocyst discarded. 

(C) KID-P vs. KID-N and discarded. (D) Ranking KID-P and discarded. (E) Ranking KID-P and 

blastocyst discarded. 



 

 

Figure S8: An analysis of optimizing implantation prediction accuracy by trading off label noise 

level and training data quality based on morphokinetic features. (A) Comparison of models trained 

on different negatives: KID-N, discarded, blastocyst discarded, underdeveloped discarded, and 

KID-N+discarded (with and without oocyte age) over KID-P vs. KID-N test set. (B) AUCs for 

models trained with known noise levels (of positive labels) over KID-P vs. KID-N test set (C) 

TTLB for models trained with known noise levels (of positive labels) over KID-P vs. discarded test 

set (D) TTLB for models trained with known noise levels (of positives labels) over KID-P vs. 

blastocyst discarded test set. 



 

Supplementary tables legends 

 

  #cycles KID-P KID-N 
Blastocyst 

discarded 
Underdeveloped 

discarded 

Train/Val 7102 1314 6485 6603 29904 

Test 802 380 637 679 2289 

 

Table S1. Data table. Divided into Train/Validation and Test sets, where all embryos from a 

given cycle where either used for train, validation or test.  

 

 

 Positive labels 
Negative labels 

available 
Negatives labels for 

training 

KID-P vs. KID-N 1314 6485 6485 

 KID-P  vs. 
Underdeveloped 
 discarded  + 
Blastocyst discarded 

1314 36507 36507 

 KID-P  vs. 
Blastocyst discarded 

1314 6603 6500 

KID-P vs. KID-N + 
Underdeveloped 

 discarded  + 
Blastocyst discarded 

1314 42992 42992 

 KIDp  vs. 
Underdeveloped 

discarded 
1314 29904 6500 

KID-P vs. KID-N 

 Learned  with 
oocyte age 

1314 6485 6485 

 

Table S2. Train splits for the different trained models. The same amount of negative labels from 

each embryo discarded category was maintained across all sets of training in order to compare 

training with different negatives fairly. KID-N consists of the smallest amount of 6500 embryos, 

so 6500 embryos were randomly selected from all other negative sets 

(Underdeveloped  discarded + Blastocyst discarded, Blastocyst discarded, KID-N + 

Underdeveloped  discarded + Blastocyst discarded and Underdeveloped discarded), first 

considering all valid negatives, and then selecting 6500 embryos at random from the valid set. 

  Positive labels Negative labels 

KID-P vs. KID-N 380 637 



 

KID-P vs. 

Underdeveloped  

discarded + Blastocyst 

discarded 

380 2968 

KID-P vs. Blastocyst 

discarded 
380 679 

KID-P vs. KID-N + 

Underdeveloped  

discarded + Blastocyst 

discarded 

380 3605 

  Positive labels Negative labels 

 

Table S3. Test splits for the different negatives sets. 

 

Supplementary videos legends 

Video S1. Temporal evolution of a KID-P embryo. Bounding box marks the automatically 

detected embryo contour. Time (in hours) is displayed at the bottom-left. The predicted 

morphokinetic state and morphological-based implantation prediction score (KID-Score, from 

time = 30 hours) are displayed at the top-left. The KID-P score at the final frame is 1. 

Video S2. Temporal evolution of a blastocyst discarded embryo. Bounding box marks the 

automatically detected embryo contour. Time (in hours) is displayed at the bottom-left. The 

predicted morphokinetic state and morphological-based implantation prediction score (KID-

Score, from time = 30 hours) are displayed at the top-left. The embryo was discarded after 126 

hours, reaching the blastocyst (tB) stage, with a KID-P score of -0.95. 

Video S3. Temporal evolution of an underdeveloped discarded embryo. Bounding box marks the 

automatically detected embryo contour. Time (in hours) is displayed at the bottom-left. The 

predicted morphokinetic state and morphological-based implantation prediction score (KID-

Score, from time = 30 hours) are displayed at the top-left. The embryo was discarded after 127 

hours, reaching the start of blastulation (tSB) stage with a KID-P score of -1.31. 

Video S4. Temporal evolution of a very low-quality underdeveloped discarded embryo. 

Bounding box marks the automatically detected embryo contour. Time (in hours) is displayed at 

the bottom-left. The predicted morphokinetic state and morphological-based implantation 

prediction score (KID-Score, from time = 30 hours) are displayed at the top-left. The embryo 

stopped developing after reaching the Pronuclei fading stage (tPNf), with a KID-P score of -9. 
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Abstract

In vitro fertilization (IVF) is typically associated with high failure rates
per transfer, leading to an acute need for the identification of embryos
with high developmental potential. The current methods are tailored to
specific times after fertilization, often require expert inspection, and have
low predictive power. Automatic methods are challenged by ambiguous
labels, clinical heterogeneity, and the inability to utilize multiple devel-
opmental points. In this work, we propose a novel method that trains a
classifier conditioned on the time since fertilization. This classifier is then
integrated over time and its output is used to assign soft labels to pairs of
samples. The classifier obtained by training on these soft labels presents
a significant improvement in accuracy, even as early as 30 hours post-
fertilization. By integrating the classification scores, the predictive power
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is further improved. Our results are superior to previously reported meth-
ods, including the commercial KIDScore-D3 system, and a group of eight
senior professionals, in classifying between multiple groups of favorable
embryos to groups that are classified as less favorable based on implan-
tation outcomes, expert decisions based on developmental trajectories, or
genetic tests.

1 Introduction

In vitro fertilization (IVF) is the most effective form of assisted reproductive
technology. However, IVF treatments are inefficient, costly, lengthy, and place
an emotional burden on the future parents. In particular, selecting the em-
bryos with the best implantation potential remains a challenging task. Despite
decades of clinical practice, there is no reliable non-invasive method to identify
the small fraction of embryos that possess the highest potential to develop into
a blastocyst, which can then be implanted and hopefully proceed to term [11].
Thus, to maintain reasonable pregnancy rates, the current practice often in-
volves the transfer of multiple candidate embryos into the uterus. This results
in clinical complications and health risks to both the newborn and the mother,
with over 10% of IVF pregnancies being twins or more [29].

Several methods have been proposed to rate embryos by their implantation
likelihood. The current practice involves a single image of the embryo taken by
a microscope mounted camera moments before transferring, typically at day 5,
with relatively low identification rates [42]. Methods for earlier development
stages are rarely studied, perhaps because it is considered almost impossible to
identify viable embryos based on a single pre-blastocyst image [12, 7].

Time-lapse incubation (TLI) has the potential for improving identification
due to the availability of more data points and the ability to model embryo devel-
opment. Time lapse videos typically consist of 70 images/day, 7 foals each. That
is, TLI provides approximately 2500 images for each day 5 blastocyst embryo.
To date, no accepted or standardized algorithm exploits the added information
in the TLI sequence or that can outperform traditional, manual microscopy-
based scoring. As a result, despite the added information TLI provides, IVF
pregnancy rates remain low.

TLI studies are often limited to later developmental stages, mainly day 5
blastocysts, and require manual annotations of many spatial-temporal features
from the TLI stream to obtain a single score [5]. As far as we can ascertain,
our method is the only method that can be applied to all embryos at any time
or developmental stage.

Our work integrates classification information over time to benefit from the
availability of multiple images in TLI during training, and can be applied to
either TLI data or single microscopy images during test. We do not empha-
size tracking and meeting explicit development milestones. Instead, we focus
on obtaining a stable classification score by building shared feature layers for
the multiple development stages and making use of unlabeled or ambiguously
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labeled embryos. The latter is crucial, since many embryos were not transferred,
and even those that were, are typically transferred as part of a group of embryos,
for which the fate of each individual embryo is uncertain.

Our semi-supervised method is based on assigning pseudo-ranking labels to
pairs of embryos. A classifier is then trained based on these labels, by employing
a Siamese network. Information is further integrated by considering multiple
time points. The improved labels are then used to obtain a second set of pseudo
labels and the process repeats one more time.

Our results indicate that temporal integration helps, even if it is employed
only during training, that employing pseudo labels together with pair contrast-
ing is effective, and that the obtained method greatly outperforms the current
commercial system.

2 Related Work

In the early days of IVF treatments, a two dimensional snapshot was taken
by a microscope at the different development stages of the embryo [12]. Many
machine based models have been proposed involving clinical features, such as
oocyte age, causes of infertility, oocyte stimulation, and semen analysis, in ad-
dition to embryonic data [44, 32].

In particular, several (typically 10-100) features are chosen, which are then
subjected to a feature selection technique such as SVM [15], multivariate lo-
gistic regression [8], genetic algorithm and/or decision trees [14], Bayesian net-
works [10] and even ANN [24]. Nevertheless, all these methods mainly concen-
trate on predicting the probability of a patient to conceive, rather than ranking
which embryo has the best probability of implanting given a group of possible
embryos and their corresponding images. Several models have been proposed
for ranking embryos based on a single image [44, 32], taken at a specific time
such as day 3, cleavage-stage [18], day 5, blastocyst stage [15] or even day 1,
when the pronuclei appear [28].

To overcome the inability to accurately evaluate early stage embryos, cultur-
ing embryos to the blastocyst stage combined with grading protocols have fre-
quently been implemented in both research and clinical practice [12, 34, 40, 30].
Several AI methods were recently presented. STORK [19] automates and ER-
ICA [6] replaces the manual ranking of late blastocyst embryos. For developing
STORK , expert embryologists were asked to grade embryos using the Veeck and
Zaninovich system [45], a slightly modified version of the Gardner system [12],
as poor, fair or high quality. Then, a CNN was trained to distinguish between
the high quality and the poor quality embryos, disregarding the fair quality
embryos. They reported an AUC of 0.98 predicting whether an embryo was
of good quality or poor quality over a test set tagged by one of the Cornell
clinic’s embryologists. However when the embryos were tested by embryologists
in a different hospital (Universidad de Valencia, Valencia) the AUC dropped to
0.75, suggesting that STORK overfitted to the blastocyst grading at the Cornell
clinic. Moreover, fair quality [20] accounts for more than 40% of the STORK
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data and is the hardest to identify. Finally, the STORK system implements a
scoring system rather than attempts to predict implantation outcomes. Recent
studies suggest that the Gardner score is not well aligned with implantation
probability or even euploidy [6]. ERICA [6] is a two-step method with the goal
of ranking late stage blastocysts. In the first step, 96 spatial features are ex-
tracted from a 2D image. This is followed by a second step, in which a CNN
is trained over these 96 features to predict embryo ploidy and implantation.
We note that the spatial features are not exactly defined and require human
expertise. ERICA was reported to obtain an accuracy of 70%. However, the
train and test embryos were hand-picked as having “good” images; i.e. embryos
of lower quality were ignored. Furthermore, the sample only consisted of 84
embryos from 19 patients and the test set was biased by a criterion of having at
least one euploidy and one aneuploidy embryo. This may imply a skew towards
younger patients [9, 10, 14] since patient age was shown to predict implanta-
tion [9]. In addition, some of the embryos were tagged as positive based solely on
beta human chorionic gonadotropin (beta-hCG) results, which is not sufficient,
since implantation is normally defined as the presence of (at least) a gestational
sac or a heartbeat [19, 32], to exclude early miscarriages (chemical pregnancy).
Most importantly, more than 95% of the embryos in their study were either in
the middle or after the hatching stage, which typically corresponds to Day 6 or
Day 7 embryos, while the vast majority of today’s transfers happen earlier.
Time-lapse incubation (TLI) enables the continuous tracking and screening
of fertilized embryos, unlike traditional microscopy that is limited to snapshots
of a few discrete points in time [3, 26]. Time-lapse imaging overcomes the
traditional drawbacks of traditional microscopy, such as exposing the embryos
to environmental changes [25]. It is known that time-lapse microscopy can
point to new dynamic markers of embryo quality and provide novel algorithms
for effective embryo selection [4].

Several algorithms were proposed in the last few years based on embryo
kinetics and morphology as identified manually by experts and have been used
to predict implantation [17, 26, 27], blastocyst formation [27] and even genetic
chromosomal disorders [33, 41]. However, time lapse machines have yet to yield
better prediction results than regular microscopy [4]. Moreover, current studies
are based on morphology and morphokinetic parameters which require manual
annotation and are thus associated with intrinsic variability.

A few studies have addressed the task of blastocyst formation but have
mainly considered embryos that were observed for 5 days, by which time 97%
of the blastocyst embryos had already developed into blastocysts [24]. These
authors reached an AUC of 80% with the blastocyst scoring algorithm, which
however was found to be inferior to manual accuracy by visual inspection. Sev-
eral studies have reported positive correlations between pronuclei markers and
embryo viability. Specifically, markers such as the appearance of pronuclei and
fading timing (tPNa, tPNf), the number of pronuclei, pronuclei shape, symme-
try, and joint path were found to be associated with blastocyst development
and implantation outcomes [1, 38, 21]. However, these markers have never been
integrated into a scoring system, and not all of the embryos in these studies
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were placed in the TLI early enough to track the pronuclei stage.
Other studies have addressed the task of cleavage stage (day 3) classification

using time lapse imaging [17, 26]. However, these do not consider events after
76 hours. A study by Liu et al. [23] presents a flow diagram with six conditions
for scoring the embryo with a grade ranging from A to F after 68 hours.

The most common (patented) implantation scoring for cleavage stage em-
bryos is EmbryoScope’s built-in algorithm (Vitrolife) called KIDScore-D3, which
gives a (one-time) prediction after 66 hours. KIDScore-D3 implements a binary
decision tree that is based on five morphokinetic conditions. The authors report
an AUC of 0.65 in predicting implantation over day 3 transfers [31]. Another
built-in score, called KIDScore-D5 combines both morphokinetic with morpho-
logical assessment and provides a score between 1 and 6. A recent study [13]
suggested that the KIDScore-D5 improves implantation rates, compared to tra-
ditional morphological scoring, and is associated with PGT euploidy. It was
not released to the public, so we cannot evaluate its performance. Crucially, all
these studies are tailored for specific timing or were based on manually selected
features that are only present in a small fraction of the TLI stream making them
hard to use in practice, given the high workload and required expertise.

Other recent studies have suggested new markers and grading models for day
5 blastocyst embryos based on TLI tracking. One study reported a strong cor-
relation between spontaneous blastocyst collapse and pregnancy outcomes [36].
In another study, it was shown that TLI streaming can be exploited to au-
tomatically classify Inner Cell Mass (ICM) and Trophectoderm grading [20].
The results indicated that TLI led to superior results compared to a single mi-
croscopy image snapshot. Another study employs different spatial parameters
manually acquired at different time/ development stages (mainly late blastocyst
stages) to accurately predict implantation results [5]. However, there is yet to
be found a quantitative scoring algorithm based on these findings.

The first deep network for predicting the implantation potential of blasto-
cyst embryos from time-lapse videos was recently presented [43]. Unfortunately,
the way the entire video sequence was fed to the network was not described in
this study. The authors reported an AUC of 93%. However, considering the
distribution of the dataset (694/1079/7063 KID-positive / KID-negative /Dis-
carded), the results correspond to a model that accurately discarded 100% of
the discarded embryos and predicted almost randomly (with a 55% success rate)
over all the remaining embryos (i.e., embryos with KIDp/KIDn label). Since by
definition all the discarded embryos could have been discarded manually, these
results reflect a 55% accuracy for the KIDp/KIDn embryos. Further, it could
only be evaluated over blastocyst embryos, so this algorithm cannot be used as
a grading system as of the early stages of embryonic development (Days 0-3).

3 Method

Each image (500x500 pixels) depicts a centered spheroid culture well of a size
that is approximately 430x430 pixels. The embryo itself can be found anywhere
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inside the well. Thus, a segmentation of the embryo sub image is used as a pre-
process, see Fig. 1. This segmentation employs a UNet [35] network trained to
minimize a pixelwise soft hinge loss function.

Since the embryo consists of high variability due to temporal changes, from
one cell to fully hatching, it is required to segment exactly which pixels belong to
the embryo. The imbalance between the “foreground” pixels (i.e, that contain
the embryo) and “background” pixels, and the varying difficulty between pixels
of each type, calls for a careful weighting of the training objective. Inspired
by the focal loss [22], our objective function multiplies two terms per pixel.
The first is a binary soft hinge loss. It is obtained by performing the soft-max
operation over the hinge-loss, which is both smooth and upper bounds the 0-1
loss [39].

lp(sp, yp) = log
(

1 + eγ(m−yp·sp)
)

(1)

where yp is the mask grand-truth at the pixel p, which denotes if the pixel is
inside the embryo or not, and sp is the prediction score at the pixel p. The
margin m and the constant γ are both set to 1.

The second term weights all the pixels, such that pixels that are solved with
high confidence are underweight. To compensate for the imbalance between
foreground and background, each type is separately weighted to have 1 unit
weight.

wp(sp, yp) =
e−sp·yp∑

q∈[P ],yq=yp
e−sp·yp

(2)

The overall loss per single example is given by,

l =
∑
p∈[P ]

wp (sp, yp) · lp (sp, yp) (3)

The training was performed over 50634 manually tagged images from 455
TLI embryo movies and validated over a test set of 9511 images from 90 TLI
embryo movies. The resulted per pixel 0-1 accuracy is 0.994 with the weighting
scheme applied, and 0.991 without. Using the AUC measure, the corresponding
results are 0.994 vs. 0.984 on the test set. This indicates high accuracy segmen-
tation, even without the modified loss, which is further improved (eliminating
a third of the errors) by it.

The IVF data is extremely heterogeneous and the labels are noisy. First, the
reasons for infertility and implantation failure vary between cases and depend
on both the embryo and the mother. Second, the Known-Implementation-Data
(KID) provides partial labeling: the successful implantation cases (KIDp) indi-
cate a healthy embryo, while a negative outcome (KIDn) may indicate issues
that may not be associated with the embryo itself. Third, the data consists
of embryos captured at multiple time points, at completely different levels of
development. Images taken at day 2 typically consist of 4-8 cells, while images
taken at day 5 are typically in some of the blastocyst stages.

To tackle the first issue, we use the age of the mother (more precisely the
oocyte age) as an instrumental variable that is correlated with the underlying
medical challenge and compare embryos for mothers of similar ages.
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(i) (ii)

(iii) (iv)

Figure 1: Embryo pixelwise segmentation using a UNet [35]. The output masks
the network outputs are given for different developmental stage examples. (i) 8
cells, (ii) 10 cells (iii) blastocyst (iv) expanded blastocyst.
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Figure 2: The classification model. A 256x256 cropped embryo input image, is
fed into Resnet50 CNN with multiple prediction heads. Each head corresponds
to a temporal window of 2 hours.

To tackle the second issue, we provide a method that relies on soft labels.
This also allows us to learn from embryos for which the KID status is unknown.
The soft labeling is applied to all pairs of samples i, j ∈ [N ] in a minibatch of
size N , that contains embryos of mothers of similar age.

L =
∑

i 6=j∈[N ]

l (si,j , yi,j) , (4)

where si,j is the joint score of the pair (i, j) in mini-batch at size N. yi,j is the
label associated with the pair, and l is some loss function.

To tackle the third issue, we condition the prediction on the stage of devel-
opment by employing multiple prediction heads in our network classifier, where
each head corresponds to a temporal window of two hours within the time in-
terval ∆t = [t0, te] we inspect.

Our network models have a ResNet50 [16] backbone, after which a separate
classification-head of two residual convolutions is dedicated to each time window,
see Fig 2. At inference time, we only consider the head that is relevant to the
frame we classify, thus conditioning our result on the time of capture.

To take advantage of the fact that we have multiple images per embryo,
we integrate information across different time points, making our soft labels
more informative. Specifically, we consider the time interval ∆t = [t0, te] and
integrate the classifier scores over time using an auto-regression moving average
(ARMA) model, in order to obtain a fused score.

With these building blocks, we employ six models A–F, defined sequentially,
on top of each other, see Fig 3.
Model A is a binary classifier A that accepts single image xt from all time
points t ∈ ∆t. The train data is a set of the form {({xti}t, yi)i} where yi is the
KID label of the i-th embryo. The loss function is a the same soft hinge loss
given in Eq. 1.

Lh =
∑

i∈[N ],t∈∆t

log
(

1 + eγ(m−yiA(xt
i))
)
, (5)
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Figure 3: Models overview. (A) A CNN model, trained in a fully supervised
manner over KIDp vs. KIDn, a total of 7799 embryos. (B) A temporal ARMA
filtering over the outcome of A. (C) A CNN model, trained using pseudo con-
strictive labels obtained by the outcome of B, over all training embryos, a total
of 61581 embryos (D) An ARMA filtering over the outcome of C. (E) A second
iteration of pseudo constrictive labels: a CNN model, trained using pseudo con-
strictive labels obtained by the outcome of D. (F) An ARMA filtering over the
outcome of E.
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where m and γ are parameters that control the margin between positives
and negatives and loss softness, respectively.
Model B integrates the single frame outputs A(xti) using a first order ARMA
model. Namely, for all t ∈ ∆t, B(xti) = αA(xti) + (1−α)A(xt−1

i ). Embryo score
B(xtei ) is given by considering the last time point.

Model C is a neural network C that accepts an image as input. It is trained
using all embryos, including those for which KID data is not available (embryos
that were not transferred or for which the outcome is ambiguous).

Model B provides the pair metric si,j and pair label yi,j from Eq. 4. The

former is given for a pair of input images xtii , x
tj
j as

si,j = C(xtii )− C(x
tj
j ), (6)

yi,j =


1, B(xtei )−B(xtej ) > θ, yj 6= 1

−1, B(xtej )−B(xtei ) > θ, yi 6= 1

0, otherwise

(7)

The CNN C is, therefore, trained based on the multi-frame scores of model
B, which is applied to samples with KID positive (KIDp), KID negative (KIDn),
KID unknown (KIDu), or samples with no KID tag (not-KID). These soft labels
are restricted such that KIDp samples would not be on the negative side of
the soft label. Note the pairs are not limited to having the same time, which
encourages early classification. The threshold θ is meant to relax errors in model
B. Overly large θ may dismiss too many pairs. On the other side, a low θ may
overfit to the errors of model B.

To avoid the implantation bias that is associated with oocyte age, out of all
pairs in a given minibatch, we only consider pairs that have an oocyte age that
is smaller or equal to a threshold θo.
Model D is to model C what model B is to model A. It integrates C’s outcome
over the interval ∆t, D(xti) = αC(xti) + (1− α)C(xt−1

i ). Model E applies the
soft label procedure of Eq. 4 to model D, the same way that model C employs
the outcome of model B. Finally, Model F integrates model E using the ARMA
model, similar to model D with respect to C and model B with respect to A.

4 Experiments

Data After the culturing period inside the incubator concludes, the best em-
bryos (typically 1-2, out of 10-20) are transferred. The remaining embryos
are frozen, if they appear morphologically viable, or otherwise discarded. For
those embryos that were transferred, tagging follows the Known Implantation
Data (KID) designations: (i) KID-positive (KIDp), if the number of transferred
embryos equals the number of gestational sacs, i.e., each transferred embryo
was successfully implanted. (ii) KID-negative (KIDn), if there are no gesta-
tional sacs, i.e., none of the transferred embryos implanted. (iii) KID-unknown
(KIDu), if the number of gestational sacs is greater than zero but smaller than
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Table 1: Train/validation (val) and Test embryo implantation data.

KIDp KIDn KIDu Discarded Hard Discarded not-KID Euploid Aneuploid

Train/val 1314 6485 2106 36507 11504 14934 342 713
Test 380 637 0 2289 687 0 59 117

the number of transferred embryos. In this case, the outcome of each individual
embryo is uncertain.

Untransferred Embryos (frozen or discarded) have no tag and are denoted
not-KID. Typically, those account for ∼85% of the embryos [43]. We denote
embryos as hard-discarded, discarded that developed at least to the blastocyst
stage. Embryos that had preimplantation genetic testing (PGT) have in addi-
tion a tag of euploid/aneuploid for chromosomal normal/abnormal, respectively.

The training data was taken from four hospital centers (left out for anonymity).
After fertilization, the embryos were incubated in EmbryoScopeTM (Vitrolife,
Copenhagen, Denmark), a time-lapse incubator that captures images every 15
to 20 minutes. The embryo development videos were collected from July 2014 to
December 2019, with oocyte ages of 23.6-43.6 years. Another set used, consists
of embryos that underwent PGT from another anonymous center. The study
was approved by the Investigation Review Board of the anonymous institute.
Data was spit to Train and Test, without intersection between patients, such
that the test set is composed only of embryos for which data is available for
the entire length of 114 hours. This makes the KIDn test set harder (since
easier negative cases from a day 3 transfer would have been discarded and not
transferred on day 5) and it allows for comparing results between different time
points on the exact same test set. The sizes of the different splits are detailed
in Table. 1.
Setting the hyperparameters Setting m = 0 and γ = 1 of Lh, the binary soft
hinge loss would become the binary cross entropy loss. In our work, we set early
on the development process m = 1, γ = 1, which add a significant margin, and
further regularize with weight decay of 1e-5. The batch size was set to 24, thus
allowing a maximum of 264 pairs in a single minibatch. The average oocyte
age of KIDp/KIDn embryos was 31.33/35.78 with Standard Deviation (SD)
of 4.98/5.97, respectively. We employ θo = 2, avoiding comparisons between
oocytes that have more than a half SD age gap, and having an average of 32
valid pairs in a minibatch.

The parameter θ in models C and E was set by considering the two 100-
bin histograms computed for the values obtained by applying model B to the
training sets of KIDp and KIDn. Specifically, the value is the mean over the
difference between the mean value of matching bins of the two histograms. A 2nd
value of θ is used in learning model E based on Model D, and it is computed by
considering the histograms obtained from applying model D on the two training
sets.

The ARMA coefficient α used by integration models B,D,F was set to 0.05,
to incorporate long scores memory.
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Training involved all training data, whereas the results were tested with
respect to four different subsets of the test set: (i) KIDp vs. KIDn, (ii) KIDp
vs. aneuploid, (iii) KIDp vs. Discarded, and (iv) KIDp vs. Hard Discarded.

Table 2: Classification results (AUC) for each model for the different datasets
(each denoted by the negative class) at the end of day 3 and at the end of day
5.

Model Day KIDn Aneuplody Discarded Hard-Discarded

A (multi class model)
3 0.561 0.180 0.718 0.590
5 0.653 0.633 0.916 0.849

B (integration of A) 5 0.656 0.67 0.927 0.868

C (pair model over B)
3 0.620 0.604 0.865 0.780
5 0.669 0.873 0.965 0.924

D (integration of C) 5 0.671 0.885 0.967 0.929

E (pair model over D)
3 0.624 0.724 0.861 0.780
5 0.678 0.890 0.967 0.935

F (integration of E) 5 0.681 0.904 0.970 0.942

Liu et al. [23] 3 0.594 0.691 0.814 0.685

KIDScore-D3 [31] 3 0.582 0.671 0.832 0.707

We evaluate the accuracy of soft-labeling (models C-F) across all datasets,
times, and ages, compared to both fully supervised learning (models A-B)
and two previously reported studies, Liu et al. [23] and the FDA-approved
KIDScore-D3 [31].
The results are reported in Table. 2. Evidently, each progression of our method
(from A to B to C, etc.) improves the classification accuracy, for both day 3 and
day 5 and across the four classification tasks. This indicates that integration over
time helps (A to B, C to D, E to F) and the utility of training the single image
classifiers (C, E) using information integrated over time (B and D, respectively).

Our latest single-image classifier (model E), which does not observe multiple
images during test (it is trained based on sequence information), outperforms
on day three both Liu et al. and the proprietary day 3 KIDScore-D3 models,
despite both latter models requiring 66-68 hours of continuous monitoring and
manual annotations.

To better understand the availability of information across different time
points, we evaluate models A, C, and E at different times, see Fig. 4. Also
shown is the performance obtained by the Liu et al. and KIDScore-D3 models,
after observing multiple measurements over three days. As can be seen, model E
almost always improves upon model C and always improves upon model A. Both
Liu et al. and KIDScore-D3 models are only competitive with our initial model
(A), and with our intermediate model (C) when considering KIDp vs. aneuploid
(see Supplementary for the two other tasks) before 76 hours since fertilization.
Notably, as time progresses, the accuracy tends to increase. Around day 4,
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(a) (b)

Figure 4: Prediction ability (AUC) as a function of time since fertilization
(hours) for single-frame models. (a) KIDp vs. KIDn classification, (b) KIDp
vs. aneuploid.

(a) (b)

Figure 5: Prediction ability (AUC) as a function of oocyte age (years). (a)
KIDp vs. KIDn classification, (b) KIDp vs. aneuploid.
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Table 3: KIDp vs. KIDn Classification results (AUC) of multiframe model F
compared to professional embryologists at the end of day five, for different ages
of the mother. The mean is computed across the nine age groups. The p-value
is obtained with the unpaired t-test.

Model/Annotator age 27 age 29 age 31 age 33 age 35 age 37 age 39 age 41 age 43 Mean

embryologist 1 0.562 0.555 0.627 0.665 0.635 0.580 0.667 0.725 0.734 0.639

embryologist 2 0.613 0.599 0.623 0.638 0.631 0.599 0.661 0.686 0.717 0.641

embryologist 3 0.61 0.612 0.643 0.682 0.656 0.634 0.699 0.703 0.684 0.658

embryologist 4 0.590 0.574 0.591 0.621 0.610 0.602 0.661 0.687 0.697 0.626

embryologist 5 0.564 0.589 0.634 0.687 0.664 0.647 0.677 0.693 0.683 0.649

embryologist 6 0.632 0.607 0.625 0.624 0.599 0.594 0.653 0.683 0.675 0.632

embryologist 7 0.613 0.575 0.589 0.633 0.586 0.569 0.622 0.654 0.693 0.615

embryologist 8 0.632 0.589 0.636 0.666 0.662 0.617 0.657 0.683 0.731 0.652

Mean embryologists 0.602 0.587 0.621 0.652 0.630 0.605 0.662 0.689 0.702 0.639

SD embryologists 0.026 0.018 0.019 0.024 0.028 0.025 0.020 0.019 0.021 0.013

model F 0.636 0.638 0.663 0.703 0.711 0.687 0.738 0.760 0.755 0.699

P-value 0.010 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000

which is typically corresponding to the morula stage, there is often a small drop
in performance. On the contrary, starting the blastulation phase, the accuracy
rate significantly increases. Both trends are well-known in the literature [2, 37].

The age of the oocyte is an indicator of the underlying fertility issue. In
Fig. 5, we separate the results based on this age. As can be seen, all of our
models outperform both Liu et al. and KIDScore-D3 models when predicting
the KID status across all age groups, and the models that involve pair-training
(C-F) outperform it in all groups also for aneuploid detection.

See supplementary for an ablation study that compares pair loss with binary
cross entropy loss.

A comparison to human graders The performance of multiframe model F
was further compared to eight professional embryologists, each from a different
clinic, spread around multiple centers globally.

Each embryologist was asked to score the embryos that were transferred,
e.g. KIDp vs. KIDn, between 1 to 5 (higher is better). Then, an AUC was
calculated with respect to the implantation tag, for each age group. The results
comparing our last model to the embryologists are reported in Table. 3. As can
be seen, the model outperforms the human embryologists across all age groups
at a p-value that is 0.01 at most, often much lower.

5 Discussion

One of the most challenging barriers in solving the task of embryo identification
is the lack of labeled data. Typically, only 15% of the embryos are transferred.
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The others are frozen or discarded. Multiple embryos are often jointly trans-
ferred, leading to ambiguous labeling. Moreover, embryos may not implant suc-
cessfully due to factors that are not embryo-related. This, in turn, means that
negative labels are noisy. We tackle both problems by introducing a pseudo soft
label scheme, which requires only part of the data to be labeled, for initializing
the learning process.

The resulting single-frame classifier learns a time-dependent prediction that
can be applied to all embryos with no limitation of time or developmental stage.
Further, it does not require any manual annotations which are time consum-
ing and provides continuous estimations of embryo viability as early as day 2
(Fig. 4), rather than a single score long after the oocyte was fertilized. Integra-
tion of the single frame scores is shown to further improve the results. Thus,
unlike other algorithms, it can be used seamlessly in real-time IVF workflows,
using even low-cost conventional microscopes. Further, it was shown to out-
perform both Liu et al. [23] method and Vitrolife TLI’s built-in scoring, the
KIDScore-D3, in identifying KIDp embryos vs. KIDn, aneuploid, and hard-
discarded embryos, at all times, starting at 30 hours, which is 36 hours before
KIDScore-D3 and 38 hours before Liu et al. are available. A more detailed
comparison yields that this superiority is kept for all ages and datasets (Fig. 5
and supplementary) for models C onward.

The presented single-image classifier successfully identified KIDp vs. ane-
uploid with an AUC of 0.89, which implies that it can become a non-invasive
PGT replacement. We note that the classification of aneuploid vs. KIDp is
more clinically relevant than the outcome of the PGT test itself, since not all
the euploid embryos can produce implantation. Additional discussion of the
results can be found in the supplementary.

6 Conclusions

The literature on fully automatic predictive IVF does not address the utilization
of multiple frames taken over time and does not provide solutions for utilizing,
during training, embryos with missing or ambiguous labels. We address the
first problem by proposing a simple time integration method. The obtained
knowledge is further used to train a single-frame classifier that can be used, even
if multiple frames are not available. To learn in a semi-supervised manner that
incorporates unlabeled and ambiguously labeled samples, and to address the
problem of negative implantation labels for high-potential embryos, we suggest
a pseudo-labeling scheme that is applied to pairs of samples. Our results indicate
that both the time integration and the pseudo labeling improve results, even
when applied multiple times, in an interleaving manner. Our method obtained
considerably better performance in comparison to the existing FDA-approved
system, which requires expert labeling across multiple time frames.
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A Additional Results

Fig. 1 and Fig. 2 are extended version of the corresponding paper figures, which
contain all four datasets (for brevity, the paper only included the first two panesl
of each).

Panel (c) in both figures addresses the task of identifying KIDp from dis-
carded. The motivation for considering such a classifier, is to compare directly to
a human embryologist. Embryologists perform the task of classification between
discarded and non-discarded (i.e. KIDp+KIDn) embryos quite effectively.

The hardest discarded embryos are those that got to the blastulation stage,
and yet were found to have poor morphology (such as CC graded embryos, using
the Garnder method [1]). Those embryos can often be filtered out only after
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the morphology is clear, at the late stages of blastulation. In panel (d) of both
figures, we present identification of KIDp with the hardest discarded.

As can be seen in Fig. 1, both single-image pair models (C and E), outper-
form the proprietary day 3 KIDScore-D3 model, at all times for hard-discarded
(d) and starting from 40 hours for discarded (c), despite the latter requiring 66
hours of continuous monitoring and manual annotations. Our initial model A
is on par with KIDScore-D3 only late (106 hours), demonstrating the need to
deploy the other steps suggested by our method.

Fig. 2 demonstrates that all pair models (C-F) outperform the initial models
(A-B) which outperform the KIDScore-D3 model when predicting KID status
across all age groups. The second integration pair model (F) outperforms the
first pair integration model (D) across all ages. Further, even the latest single-
image pair model (E) outperforms the first pair integration model (D) at most
age groups, which empathises the efficiency of the second pair iteration in mov-
ing from a sequence-based decision to a single frame.

Interestingly, as can be seen from Fig. 2(a) KIDp vs. KIDn accuracy de-
clines with age. KIDp vs. aneuploidy, discarded and hard-discarded (panels
b-d) are more stable as a function of age. This is intuitive, since infertility of
aged patients is often a result of the lower quality of older oocyte (age related
infertility) [2], whereas younger infertility cases are often associated with other
background causes. Thus, typically at aged patients, by selecting good embryo,
the infertility cause is eliminated. Yet, for younger patients, selecting good em-
bryo is often insufficient for a positive outcome. This, in turn, means that KIDn
label is more noisy at younger ages. Aneuploid, discarded and hard-discarded
tasks, are purely related to the embryo, thus not affected by this phenomena.

B Ablation Study

Table. 1 is an extended version of Table. 2 from the paper which includes ad-
ditional models, which were trained using pseudo labels but with a the binary
cross entropy loss instead of the pair loss.

Model G is analogous to model C in that it uses pseudo labels generated by
model B, only a multiclass loss is used. Model H integrates model G. Model I
is then trained using pseudo labels generated by H. The final ablation model is
analog to model F in that it integrates the second pseudo labels model, in this
case model I.

As can be seen, across all datasets, Model C is better than G, D is better
than H, E is better than I, and finally, F is better than J. This indicates of the
advantage of the pairwise approach.
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(a) (b)

(c) (d)

Figure 1: Prediction ability (AUC) as a function of time since fertilization
(hours) for single-frame models. (a) KIDp vs. KIDn classification, (b) KIDp
vs. aneuploid, (c) KIDp vs. discarded, (d) KIDp vs. hard discarded.
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(a) (b)

(c) (d)

Figure 2: Prediction ability (AUC) as a function of oocyte age (years). (a)
KIDp vs. KIDn classification, (b) KIDp vs. aneuploid, (c) KIDp vs. discarded,
(d) KIDp vs. hard discarded.
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Table 1: Classification results (AUC) for each model, including ablations mod-
els, for the different dataset (each denoted by the negative class) at the end of
day 3 and at the end of day 5.

Model Day KIDn Aneuplody Discarded Hard-Discarded

A (multi class model)
3 0.561 0.180 0.718 0.590
5 0.653 0.633 0.916 0.849

B (integration of A) 5 0.656 0.67 0.927 0.868

C (pair model over B)
3 0.620 0.604 0.865 0.780
5 0.669 0.873 0.965 0.924

D (integration of C) 5 0.671 0.885 0.967 0.929

E (pair model over D)
3 0.624 0.724 0.861 0.780
5 0.678 0.890 0.967 0.935

F (integration of E) 5 0.681 0.904 0.970 0.942

G (multi class model, pseudo-label over B)
3 0.565 0.360 0.744 0.683
5 0.665 0.801 0.944 0.904

H (integration of G) 5 0.664 0.819 0.949 0.913

I (multi class model, pseudo-label over H)
3 0.605 0.662 0.836 0.740
5 0.669 0.878 0.961 0.924

J (integration of I) 5 0.670 0.898 0.965 0.933
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DISCUSSION AND CONCLUSION 
 

In vitro fertilization (IVF) procedures have been used in clinical practice for the past 40 years. To 

this day, however, there are no reliable non-invasive methods available for identifying the small 

fraction of embryos that possess the highest potential to develop into a blastocyst that can be 

implanted and hopefully proceed to full-term delivery (Alpha Scientists,2011; Guerif et al., 2007). 

Common practice often involves the transfer of multiple embryos into the uterus, which in turn 

leads to multiple-embryo pregnancies and the risk of associated complications to both the newborn 

and the mother (Gleicher et al., 2016; Pinborg, 2005). The latter can be avoided by the transfer of 

a single embryo alone. However, traditional embryo selection methods, which are mostly based 

on morphological markers, are not predictive enough to allow routine single embryo transfer with 

reasonable implantation rates; therefore, new scoring tools are needed. 

The emergence of TLI has led to a range of classifications and grading systems to assess embryo 

quality. Several markers related to the pronuclei stage (Lynette et al. ,2000, Scott et al., 2000, 

Aguilar et al., 2014, Li et al., 2015); the cleavage stage (Holte et al. 2007, Meseguer et al. 2011, 

Yang et al., 2015, Gardner et al., 2016) and the blastocyst stage (Gardner et al., 2000, Hassan et 

al. 2018, Bori et at., 2020,Chavez-Badiola et al., 2020) have been suggested to predict embryo 

viability. Saraeva et al. (2019) demonstrate a correlation between spontaneous blastocyst collapse 

and poor pregnancy outcomes. However, these have not always been translated into quantitative 

implantation grading. Further, they were based on a biomarker appearing at a specific time point 

and  ignoring the rest of the TLI stream. My study (chapter 1) was inspired by this 

biomarkers  approach, proposing a new training scheme that identifies golden markers over short 

time periods called packets. We propose an adaptive weighted hinge loss as well as a time-

dependent architecture with shared weights between times for training Convolutional Neural 

Network (CNN). The CNN is trained to find biomarkers to predict embryo viability at only some 

of the packets, while minimizing the amount of “fake markers”. Using the same approach as Lin 

et al., (2017), the weights are tuned across packets of the same embryo according to whether one 

of the packets is a golden marker. Seeing as another packet already located a golden marker, the 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Meseguer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=21828117
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weight of the rest of the packets becomes lighter. A multi-frame fusion of the packets' markers 

creates a continuous score for the embryo, according to all data available at that point in time, 

which overcomes the shortcomings of the local markers approach described previously. 

Our results show a monotonically increasing Area under the Curve (AUC) up to 0.85 at 90 hours 

for blastulation formation prediction ,compared to Milewski et al. (2016) consisting of an AUC of 

up 0.76 over the same time period and data,  and AUCs ranging up to 0.76 for implantation 

prediction of dataset including Day 3 and Day 5 transfers, compared to AUC of 0.58 achieved by 

the commercial KIDSCORE-D3. 

Since most embryos are not transferred back to the uterus, the lack of labeled data hampers the 

development of embryo grading systems. In addition, implantation failures are often caused by 

non-embryonic reasons, which result in a false negative label. For this, a different learning scheme 

or end point label is needed. In our work (chapter 4), we address both problems simultaneously by 

presenting a pseudo-contrastive label scheme that compares paired embryos instead of singletons. 

The task of predicting implantation outcome is therefore replaced with the task of rightly rank all 

the pairs inside a multi-batch of paired embryos. During the training process, a cascade of models 

is iteratively trained, where the grand-truth label is determined by the score of the previous model. 

The first model in the cascade is the vanilla fully supervised model. Our new presented framework 

enables us to increase training amounts by six fold and more (Tran et al, 2019). We demonstrated 

the effectiveness of the pseudo-contrastive labels scheme when compared to both supervised 

method and previously reported methods, including the commercial KIDScore-D3 system, and a 

group of eight senior professionals over all times and patient ages. Specifically, the pseudo-

contrastive labels model achieved an AUC of 0.699, compared to the average AUC of 0.631 

achieved by the senior embryologists' group, and 0.594 and 0.582 achieved by Liu et al. al. (2016) 

and the commercial KIDScore-D3, respectively, over a testset of 1017 Day 5 transfers, consisting 

of 380/637 implanted/ non implanted embryos. 

Both of the above mentioned studies do not explicitly consider the overall morphokinetic 

development profile of the embryo, which is considered to be one of the major advantages that can 

be gained using TLI. Similarly, since the emergence of TLI, most studies for grading embryos can 

be roughly divided into two main categories: morphological based, and morphokinetic based. Most 

morphokinetic models consist of a set of hand peaked rules involving specific events timings, 

typically till eight cells/cleavage stage (Hlinka et al., 2012, Basile et al., 2014, Meseguer et al., 
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2014, Liu et al., 2016, Milewski et al., 2016, Pirkevi et al, 2016). By contrast, although few 

morphology models were suggested for the cleavage stage (Alpha Scientists, 2011, Nasiri et al., 

2015), the majority of studies aimed for Day 5, at which morphology was found to be the most 

effective, as the embryo enters the late blastocyst stages (Garnder et al. 2000, Papanikolaou et a., 

2006, Khosravi et al. 2019, Kragh et al. 2019, Bori et al. 2020, Chavez-Badiola et al., 2020, 

VerMilyea et al., 2020). This is also reflected in clinical practice, where speed and overall 

development path are mainly used during the early developmental stages, and morphological 

scales are applied during the later development stages. However, there was no previous study that 

compares both methodologies over the same test set, and comprehensively assesses the 

information available in these channels. The latter doesn’t remain theoretical, but rather concerns 

practical questions such as which embryo should be preferred: a well developed embryo ending 

up with only fair morphology or a top graded embryo by its final morphology, yet with a less 

favorable developmental path. Here, we present two CNN models, one for each information 

category, that continuously evaluate embryo quality over time. For morphokinetics, we present a 

scheme consisting of two stages. First, we estimate 15 morphokinetic starts by employing a CNN 

over each individual frame in the TLI data, followed by operating dynamic programming to find 

the most likely morphokinetic path. The second is a CNN trained to predict implantation 

probability using the estimated morphokinetic timings as inputs. For morphology, we used our 

previously described model, based on the  pseudo-contrastive labels framework.  The amount of 

information exhibited by each model as a function of time is then compared between the two 

models across time. We observed monotonically increasing AUCs for both classifiers over time. 

Our findings indicate different trends in terms of information. Morphokinetic information appears 

already at an early stage, while  morphological information is acquired much later, around 90 hours 

post fertilization, which corresponds to the start of the blastocyst stage. From that point on, the 

morphology model bypasses the morphokinetic model, which is well aligned with both the 

practical way of working, as well as the volume of studies where morphokinetic mostly applies at 

early stages, and morphology is primarily aimed for the late blastocyst stages (Kragh et al. 2019, 

Bori et al. 2020, Chavez-Badiola et al., 2020, VerMilyea et al., 2020). As a final step, we propose 

a joint CNN model with morphokinetic and morphology pretrained models, followed by 

concatenate and prediction dense layers. The joint morphokinetic - morphology model is then 

compared across time to both individual models, and is shown to outperform both, at all times. 
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In the last phase of our work, we observed a discrepancy between the way that embryologists 

choose which embryos to transfer in daily care, and the majority of the reported studies automating 

embryo selection with machine learning. Specifically,  embryologists split the task into two 

subtasks. The first step is ranking the sibling embryos within the cohort to identify the best 

candidates for transfer. Then, after considering additional factors pertinent to the specific patient, 

such as age, weight, number of previous failed attempts to conceive, endometrium conditions, and 

other factors, a decision is made regarding the number of embryos to jointly transfer based on the 

ranking order from top to bottom. However, most studies that rely on machine learning replace 

these two steps by the single step of predicting implantation outcomes of the subgroup of 

transferred embryos and then applying the same scoring scheme for the purpose of ranking. The 

underlying assumption is that a model that could differentiate between implanted and non-

implanted embryos, is certain to classify implanted embryos from non-transferred embryos, as 

those who were not transferred are likely to possess a worse appearance than those who were 

transferred. Here, we challenge this axiom. We differentiate between the task of ranking embryos 

in a cohort and predicting implantation probability for each individual embryo, taking into account 

the overall clinical context. Similarly, we differentiate between factors that are unique to each 

individual embryo - embryo-specific - and factors shared by all the individuals within a group of 

siblings - cohort-specific. The former includes factors such as overall competence, pronuclei 

characteristics (Aguilar, et al., 2014; Scott, Alvero, Leondires, & Miller, 2000; Li, Zhao, Li, Zhao, 

& Shi, 2015), morphokinetic temporal events (Petersen, Boel, Montag, & Gardner, 2016; Liu, 

Chapple, Feenan, Roberts, & Matson, 2016), genetic ploidy status (Guh et al., 2011, Swain et al., 

2013) and  morphological markers (Garnder et al. 2000, Kragh et al. 2019, Bori et al. 2020, 

Chavez-Badiola et al., 2020). The latter includes clinical factors such as the age of the patient and 

the oocyte, the patient's weight, non-receptive endometrium, as well as other background factors. 

Despite a consensus that these clinical properties are highly correlated with implantation outcomes, 

it is by definition impossible for them to contribute to the task of ranking sibling embryos, given 

that they are shared by all embryos within a cohort. For this, we redefine the optimization task as 

ranking embryos by their viability, and consider only embryo-specific factors. Specifically, we 

demonstrate the difference between both optimization tasks by comparing a model learned to 

predict implantation with the oocyte age, and a model trained without, over different negative 

groups. Our findings indicate that despite the positive impact of oocyte age on predicting 
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implantation, the ability to distinguish between implanted embryos and other negatives, generally 

considered as easier than predicting the transferred group, deteriorates compared to the model 

trained without the oocyte age.  We Further analyze the implications of learning from implantation 

outcomes, where a negative outcome does not necessarily signify a bad embryo. We found that 

this label noise adversely affects the ability to differentiate between viable and non-viable 

embryos, even for implantation prediction, in comparison to training with trivial, but clean, 

embryos, as in discarded embryos. Furthermore, we discuss the significance of training with trivial 

negatives such as underdeveloped discarded and discarded that developed to late blastocyst stages, 

but were discarded due to poor morphology. The former was as good as learning with non-

implanted embryos (KID-N), and the latter outperformed KID-N on all test sets. Further, our 

results indicated that learning from both KID-N and discarded examples generated the best results 

on all negative test sets. Thus, besides reflecting the clinicians' practice for selecting which 

embryos to transfer in an IVF cycle, another benefit of this research is that it provides evidence for 

learning with all negative data, including those more trivial discarded, to improve classification 

results across both tasks. 

Through bringing attention to all of the aspects discussed in this dissertation, we hope to provide 

a basis for future studies and to improve the quality of IVF sessions. 
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 תקציר

מהשחלות ומופרות על ידי זרע במעבדה.    נשאבותבוגרות    ותשל הליכים בהם ביציכוללת סדרה    (IVF) הפריה חוץ גופית

( ולאחר מכן מועברות לרחם. מחזור 3-6הביציות המופרות )עוברים( מתורבתות לתקופה של מספר ימים )בדרך כלל  

. עם זאת, טיפולי פוריותהיא הצורה היעילה ביותר של     IVFבדרך כלל אורך כשלושה שבועות או יותר IVF מלא של

 .טיפולי הפריה חוץ גופית אינם יעילים, יקרים, ממושכים ומטילים נטל רגשי על ההורים לעתיד

הטוב ביותר נותרה משימה מאתגרת. למרות כמה עשרות שנים של    להשרשהבפרט, בחירת העוברים בעלי פוטנציאל  

א פולשנית אמינה לזהות את החלק הקטן של עוברים שיש להם את הפוטנציאל הגבוה פרקטיקה קלינית, אין שיטה ל

. לפיכך, כדי לשמור על אחוזי הריון בתקווה להמשך    לרחם  אותו  חזירביותר להתפתח לבלסטוציסט, שאחר כך ניתן לה

ים וסיכונים בריאותיים  מרובים לרחם. התוצאה היא סיבוכים קליני ם הריון סבירים, הנוהג הנוכחי כרוך בהעברת עוברי

 .מההריונות חוץ גופיים הם תאומים או יותר( 10%עוברים )מעל  מרובי ליילוד ולאם, עם הריונות

רק את העוברים    חזירולהימנע מסיבוכים הן לאם והן לעובר, יש לזהות ולה ,IVF כדי לשפר את שיעורי ההריון של טיפול

להש ביותר  הגבוה  הסיכוי  הו רשהבעלי  כך  לשם  ל.  שיטות  מספר  התייחסו  הצעו  כה  השיטות עד  רוב  עוברים.  ערכת 

 .ממדיות בלבד של העובר שצולמו על ידי מצלמה על גבי מיקרוסקופ רגעים לפני ההעברה-לתמונות דו 

בשנים האחרונות מספקת הדמיה מתמשכת של העוברים תוך שמירה עליהם בתנאי   ניתור עוברי בזמן  הכנסת מערכות  

)בזמן(  ממדית  -ים. עם זאת, רק מחקרים בודדים נערכו על היישומים הפוטנציאליים של הדמיה תלת  תרבות אופטימלי

ידני, הכולל עומס עבודה משמעותי ומומחיות אנושית,    תיוגלהערכת עוברים ולזיהוי המשתלמים ביותר. אלה מבוססים על  

 .מוגבלים לשלבי התפתחות מאוחרים יותר ודיווחו רק על הצלחה מוגבלת

לדירוג מודלים. ההיבטים השונים של דרוג עוברים אוטומטית אשר תספק סטנדרטיזציה  עבודת גמר זו מציעה מערכת  

ה בחיזוי  מבחינים  אנו  הראשון  בשלב  היטב.  נבחנים  זו  נתפסים   שרשהמטרה  כלל  בדרך  ששניהם  העוברים,  ודירוג 

זמן להשגת הריון.    ים להשתמש במדד חדש בשם אנו מציע ,AUC כמשימה אחת. בנוסף להשוואת מודלים שונים על ידי

מידע קליני נוסף של גיל הביציות מגבירה    בנוכחות  רשהבעזרת מדדים אלה, אנו מדגימים שלמידה לחזות תוצאות הש

. בנוסף, אנו מספקים  אותה העתגבוה בל  סווג עוברים בעלי מראה נמוךבאת דיוק חיזוי ההשתלה, אך מביאה לדיוק נחות  

דוגמאות וכמויות נתונים בכדי לייעל את ביצועי  ה, מורכבות  ההשרשה  תוויותב  הרעשט של יחסי הגומלין בין  ניתוח מפור

קבוצת  ל עבר , מלמידהיש לשקול בתהליך ה דוגמאותהחיזוי לשתי המשימות. תוצאת המחקר שלנו מצביעה גם על אילו 

מודלים של דירוג עובר    מתווה ללמידת. יתר על כן, אנו מציעים  לימוד המסורתית של עוברים אשר הועברו לרחם ה

השונות, הלמידה    בלבד ושילוב של שניהם. על ידי השוואת מסגרות  קינטיקההמבוססים על מורפולוגיה בלבד, מורפו

 .אנו מספקים הבנה טובה יותר של נגישות המידע העוברי לאורך זמן 

  מטרה מציגים פונקציית    פוריות. אנו   ושית לזמן אמת במרפאות ובמעבדותממצאינו הופנו ליצירת מערכת דירוג שימ

עם תוויות   סכמת לימוד  ת, ללא קשר לאורך הסרטון. עוד מוצעמתוייגיםאדפטיבית חדשה הניתנת ליישום על נתונים  

עוברים שלא    נתוני הלימידהב  ובכך לכלול   של עוברים  זוגות  מנימזציה של יחסים בין מנוגדות  המבוססת על  פאסודו  
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מוש )למשל  המהווים    מדיםהועברו  קפואים(,  מסגרות   85%או  את  שיטה המשלבת  מציעים  אנו  לבסוף,    מהעוברים. 

 .המשפרת את שתי המסגרות האישיות  מסגרת לימוד משולבתהמבוססות על מורפולוגיה ומורפוקינטית ל הלמידה

או שלב   זמן  מוגבלים לשום  אינם  להפריה. למיטב  מודלים אלה  ביום הראשון  ליישם אותם אפילו  וניתן  התפתחותי, 

ולא רק חלקים קטנים ממנו. אנו מראים, לראשונה, כי הדמיה  ,TLI -ידיעתנו, זהו המחקר הראשון שניצל את כל זרם ה

דמות, כולל  ימים. המודלים שלנו עלו על שיטות קו  5של הזמן  עולה על ציון הדו מימד המסורתי אפילו לעוברים בני  

, ניתוח מסלול  בניבוי תוצאות השרשה המסחרית, וקבוצה של שמונה אנשי מקצוע בכירים, KIDSCORE-D3 מערכת

 .התפתחותי ובדיקות גנטיות

ימים, ובכך מצמצמים את הקשיים הכרוכים בתרבית    5-, המודלים שלנו מאפשרים העברת עוברים מוקדם יותר מ  לסיכום

ביותר מאפשר  טוביםמקטינה את עומס העבודה וחוסכת משאבים רפואיים. חשוב מכך, זיהוי העוברים הממושכת, אשר 

 עוברים.  הריון מרובי ם של , ובכך להימנע מסיבוכישרשההעברות של עוברים בודדים, מבלי להקטין את שיעורי הה
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 דאוחיזוי טיב התפתחות עובר בעזרת למידת מכונה מתוך תמונות וי
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