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Abstract

How organelles act in concert to shape and enable cell function is a funda-

mental question in cell biology. Progress in the field is hindered by lack of

systematic tools to dissect spatiotemporal interorganelle interactions, mainly

due to technical limitations in simultaneous labeling of multiple organelles

within the same living cell. We combine emerging computational techniques

and a publicly available comprehensive dataset of 3D cell imaging to validate

known relations and to raise new hypotheses regarding inter-organelle spatial

dependencies.

Modern machine-learning techniques were recently shown to successfully ex-

tract the locations of organelles within the cell from label-free images, a
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technique called “in silico labeling”. Transfer learning is a machine learn-

ing technique where computational models trained for one task are used as

a starting point to train a new model to a different but related task. The

intuition for the success of transfer learning stems from the understanding

that re-training models using better initial states can provide benefits when

training data are limited in volume. We use this property as means to mea-

sure spatial dependencies between different organelles. If an in silico labeling

model trained to localize an organelle is improved by transferring a model

trained to localize a different organelle, than we say that the information

encoded in the mapping to the latter organelle is useful for the prediction

of the former organelle. Such comparison between two models defines an

asymmetric link that encodes a spatial dependency between the latter and

the former organelles. We applied this methodology to construct an inter-

organelle spatial dependencies network by integrating the pairwise relations

between 13 organelles in 3D imaged endogenously labeled human-induced

pluripotent stem cells available by the Allen Institute of Cell Science.

Our preliminary results validate several known relations between organelles

and propose new predictions that should be validated experimentally. For

example, both the nuclear envelope and the endoplasmic reticulum (ER)

contribute to the prediction of the golgi apparatus, and the nuclear envelope

contributes to the prediction of the ER. The golgi and the tight junctions are

linked bi-directionally. The plasma membrane contributes to the prediction

of adherens junctions. No organelle enhances the prediction of desmosomes.

Ultimately, our project will provide a comprehensive and validated method-
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ology for predicting organelle-organelle interactions, bypassing long-standing

technical barriers in microscopy. The establishment of a rich resource of

predicted organelle-organelle interaction networks can provide a major leap

towards the “holy grail” of cell biology - inclusive understanding of cells as

integrated complex systems.
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Chapter 1

Introduction

“Organelle- a specialized cellular part (such as a mitochondrion, chloroplast,

or nucleus) that has a specific function and is considered analogous to an

organ”, -definition by Merriam Webster dictionary.

Organelles, meaning ‘small organ’ are the specialized subcellular structures

which allow it to perform its functions. Proper cell function requires multi-

ple organelles to act in concert involving physical and chemical interactions

between different organelles. These interactions can be reflected by specific

localization patterns and spatial dependencies between organelles [2–9]. Per-

turbed organelle-organelle interactions can lead to impaired functionality at

the cellular level and disease [10, 11]. While many studies focus on the role

and structure of individual organelles, much less is known about how differ-

ent organelles coordinate their organization and function within the cell, a

fundamental requirement for the observed integrated complex cell function

[2–9].
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Microscopy is the only technology that can enable determination of the or-

ganelles’ intracellular localization. However, imaging and monitoring the

dynamics of multiple organelles simultaneously in the same living cell is a

challenging task. [5], [12]. Progress in this area has been confounded by the

difficulty to achieve an integrated representation of cellular organization due

to the limited number of fluorophores that can be simultaneously tagged and

distinguished in a microscopy image [13].

To bridge these gaps [1, 14] presented that modern machine learning tech-

niques can computationally infer specific organelle localization patterns from

label-free microscopy images. The method presented a convolutional neural

networks (CNN)-based tool, employing a U-Net architecture [15] [ Methods]

to model relationships between distinct but correlated imaging modalities,

predicting corresponding fluorescence images directly from three-dimensional

(3D) transmitted-light microscopy live cell images. The label-free prediction

tool learns each relationship between 3D transmitted-light and fluorescence

live cell images for several major subcellular structures. A resultant model

can then predict a 3D fluorescence image from a new transmitted-light in-

put. A single transmitted-light input can be applied to multiple subcellular

structure models, enabling multi-channel, integrated fluorescence imaging.

Importantly, the method considers prediction of each type of organelle as

a separate task which requires its own trained model. At inference, the

network generates an image reconstructing the localization of an organelle

within the cell from a label free image. Using this method, it becomes possible

to annotate many organelle in the living cell by overlaying each network’s
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prediction of the same input image. This process is non-destructive to the

cellular structure. These results were replicated in other cellular systems

and label-free microscopy techniques [1, 14]. While, in principle, “in silico

labeling” can provide an integrated view of a live cell, all of these studies

did not go beyond a proof of principle and did not provide practical tools for

direct application toward biological discovery.

In my dissertation I developed a method that uses in silico labeling to indi-

rectly dissect organelle-organelle interactions by computationally integrating

single-organelle data from multiple experiments.Since the various networks

were trained independently of one another on images with only one type of

organelle labeled, it is hard to extrapolate information regarding holistic,

multi-organelle relations from those trained models. The general concept

relied on leveraging information learned by a model trained to localize one

organelle to a second model trained to localize another organelle. When

information learned to map one organelle enhances the mapping to a dif-

ferent organelle we can hypothesize that these two organelles are spatially

dependent.

Transfer learning is a method used to transfer knowledge acquired from one

task to resolve another. By transferring the knowledge found in various but

related source domains, it is possible to increase the performance of tar-

get learners on target domains [16, 17]. Protein folding, speech recognition,

object detection, labeling cancer cells, object tracking and recommender sys-

tems, are a few examples of tasks that have benefited from transfer learning

[18–21]. In my thesis I demonstrated a proof of principle study showing that
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transfer learning applied to in silico labeling can be used as a tool to dissect

organelle - organelle spatial dependencies. This technology will change the

way we look at biology and give biologists specific ideas for fresh experimental

setups to better understand how cells are structured inside.
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Chapter 2

Related Work

Due to the multidisciplinary nature of my study, I have covered three main

topics: organelle-organelle interactions, in-silico labeling and transfer learn-

ing.

2.1 Organelle-Organelle interactions

The cell is divided into distinct membrane-bound organelles to enable the si-

multaneous orchestration of complex and frequently incompatible biochem-

ical processes. Organelle interactions are now understood to be essential

for a variety of cellular processes [2, 22, 23]. However, due to the finite

number of labels that fluorescence imaging techniques can detect in a single

image, the spatial and temporal organization of organelles within the cell is

still poorly understood [5, 24]. An important feature to notice when talking

about Organelle-Organelle interactions is contact sites between organelles,
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contact sites have many important roles such as communication, regulation

and transport of molecules are only a few described in [5, 9, 25]. Valm Et

Al [5] presented a systems-level analysis of the organelle interactome using

a multispectral image acquisition method that overcomes the challenge of

spectral overlap in the fluorescent protein palette. Using confocal and lattice

light sheet instrumentation and an imaging informatics pipeline of five steps

to achieve mapping of organelle numbers, volumes, speeds, positions and

dynamic inter-organelle contacts in live cells. Describing the frequency and

locality of two-, three-, four- and five- way interactions among six different

membrane-bound organelles (endoplasmic reticulum, Golgi, lysosome, perox-

isome, mitochondria and lipid droplet) and showing how these relationships

change over time. The paper demonstrates that each organelle has a char-

acteristic distribution and dispersion pattern in three-dimensional space and

that there is a reproducible pattern of contacts among the six organelles that

are affected by microtubule and cell nutrient status. Another recent attempt

to elucidate the subcellular organization of multiple proteins was done by in-

tegrating and aligning localization of separately imaged mitotic proteins and

constructing a comprehensive and quantitative canonical (i.e., “average”)

4D model of mitotic protein localization network [26]. While this spatio-

temporal standardization of a dynamic cellular process holds great promise,

it reduces a complex heterogeneous process to a single plausible trajectory

that does not capture the entire variability in the diverse phenotypic land-

scape. Cho et al. [27] Constructed a library of 1310 fluorescently tagged cell

lines, and generated a large dataset that maps the cellular localization and

physical interactions of the corresponding 1310 proteins. Applying a com-
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bination of unsupervised clustering and machine learning for image analysis

allowed to objectively identify proteins that share spatial or interaction signa-

tures. The data provides insights into the function of individual proteins, but

also enables to derive some general principles of human cellular organization.

In particular, it shows that proteins that bind RNA form a separate subgroup

defined by specific localization and interaction signatures. Important finding

is that the precise spatial distribution of a given protein is very strongly cor-

related with its cellular function. Viana et al. applied new methods to deter-

mine how a subset of expressed genes dictate cellular phenotypes. To address

this challenge [28] created novel methods to transform raw cellular image data

of cells and their structures into dimensionally reduced information in a form

that accommodates the vast cell-to-cell diversity and both summarizes the

raw data. They determined, in an integrated, holistic way, where, how much

and how variable the various cellular structures are. The initial objective

was to identify quantitative relationships, or rules of organization, and then

used these data to develop benchmarks for understanding and predicting cel-

lular organization in a wide variety of biological contexts. “OpenOrganelle”

is a new data portal containing electron microscopy (FIB-SEM) cell images,

their corresponding automated segmentation of 35 organelles, and the code

and models for analyzing these data[25, 29], a high-quality resource to study

inter-organelle organization in high resolution. However this approach suffers

from limited throughput, difficulties in following dynamic processes and in

testing the effects of perturbations.
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2.2 In-Silico Labeling and Label-free predic-

tion

In the life sciences, microscopy is a crucial technique. Physical fluorescent la-

bels are added to particular cellular components using a variety of techniques,

including antibody labeling. However, these methods suffer from a number of

important flaws, such as consistency issues, spectrum overlap restrictions on

the number of simultaneous labels, and the need to disrupt the experiment

in order to get the measurement, such as by fixing the cells. To get around

these issues, computational machine-learning methods were developed that

can accurately predict some fluorescent labels from transmitted-light images

of biological samples that aren’t labeled. While labeling whole cells [30–32]

or even explicitly the nucleus [33, 34] is a relatively widely researched topic

, however labeling finer details in a cell is a relatively novel field of research.

Recent advancements in this field include two publications demonstrating

a label-free method for predicting (three-dimensional) fluorescence labels

of multiple organelles directly from transmitted light images by training

deep neural networks. This was possible by virtue of the recently available

dataset from numerous experiments across various labs consisting of pairs

of transmitted-light z-stack images and fluorescence images that are pixel

registered.[1, 14, 35]. The results in [1] were remarkable for larger struc-

tures with more structured characteristics, like the nucleus, mitochondria,

and actin filaments. However smoller structures including the golgi appara-

tus and desmosomes had less significant results. While [14] addressed the
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prediction of the location and texture of cell nuclei, the health of a cell, and

the type of cells in a mixture, [1] concentrated on using their method on a va-

riety of different structures. The work by Christiansen et al. contained data

integrated from 3 labs, whereas ounkomol et al. had only one data source.

Christiansen et al., also experimented with transfer learning: once trained to

predict a set of labels, the network could learn new labels with a small number

of additional data, resulting in a highly generalizable algorithm, adaptable

across experiments. It has been noticed previously that when learning struc-

ture shape, using a combination of other related structures can benefit the

results [36].

In a similar manner [37] demonstrate a digital staining method they call

PhaseStain that aims to convert quantitative phase images (QPI) of label-

free tissue slices into images comparable to brightfield microscopy images of

the same samples that have been histologically stained. They used skin, kid-

ney, and liver tissue to train three deep neural network models. reporting the

GAN-based staining framework’s high-fidelity performance. Worth mention-

ing Quantitative label-free imaging with phase and polarization (QLIPP), a

new computational imaging technique for label-free determination of density

and anisotropy from 3D polarization-resolved data, has been published by the

authors. [38] demonstrate how different organelles’ density and anisotropy

can be used to identify them. They also demonstrate the capability of label-

free identification of numerous brain tissue areas.
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2.3 Transfer learning

Transfer learning (TL) is a method used to transfer knowledge acquired from

one task to resolve another[16, 17]. For instance, before learning to fly a real

airplane, pilots use a variety of simulations, such as video games, to gain

prior skills, knowledge, and experience under the assumption that knowledge

gained while learning one task can be a good starting point when learning

another task.

In the context of machine learning, By transferring the knowledge found in

various but related source domains, TL seeks to increase the performance of

target learners on target domains [16, 39–43]. This is very useful when data

in the target domain is scarce and it is not possible to train a good model

with it, so TL gives the model a head start. Sometimes TL is also used to

direct the model in a specific direction when the target task is not easily

deducible from the target data.

The idea of transfer learning was first discussed in the context of education

in the last century, it was first considered in a computational context in

1995, and went through conceptual refinement in 2005 to the manner that

we comprehend it today [44].

It is most common to categorize transfer learning under three subsettings,

inductive transfer learning, transductive transfer learning, and unsupervised

transfer learning, based on different situations between the source and target

domains and tasks [43, 44]. Approaches to transfer learning in the above

three different settings can be summarized into four cases based on “What
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to transfer”. The first context can be referred to as instance-based trans-

fer learning (or instance transfer) approach [43, 45, 46] which assumes that

certain parts of the data in the source domain can be reused for learning

in the target domain by reweighting. Instance reweighting and importance

sampling are two major techniques in this context.

Employing transfer learning with convolutional neural networks (CNNs),

well-trained on non-medical ImageNet dataset, has shown promising results

for medical image analysis in recent years. MA Morid et al. conduct a scop-

ing review to identify these studies and summarize their characteristics in

terms of the problem description, input, methodology, and outcome [47].

Other recent studies incorporate transfer learning to boost research on bio-

logical data, Wang et al. [48] presented BERMUDA (Batch Effect ReMoval

Using Deep Autoencoders), a transfer-learning-based method for batch ef-

fect correction in scRNA-seq data. BERMUDA effectively combines different

batches of scRNA-seq data with vastly different cell population compositions

and amplifies biological signals by transferring information among batches.

BERMUDA outperformed existing methods for removing batch effects and

distinguishing cell types in multiple simulated and real scRNA-seq datasets.

Widmer, C., and Rätsch, G. [49] present two problems from sequence biology,

where multitask learning was successfully applied.

Stumpf, Patrick S., et al. [50]shows that transfer learning can be used to

efficiently map bone marrow biology between species, using data obtained

from single-cell RNA sequencing.

Sevakula, Rahul K., et al. [18] presented a transfer learning procedure for



12

cancer classification, which uses feature selection and normalization tech-

niques in conjunction with s sparse auto-encoders on gene expression data.

While classifying any two tumor types, data of other tumor types were used

in an unsupervised manner to improve the feature representation.

Zheng, Shijie C., et al.[51] present tricycle, an R/Bioconductor package. By

leveraging key features of the biology of the cell cycle, the mathematical

properties of principal component analysis of periodic functions, and the use

of transfer learning. They estimate a cell-cycle embedding using a fixed refer-

ence dataset and project new data into this reference embedding, an approach

that overcomes key limitations of learning a dataset-dependent embedding.

Tricycle then predicts a cell-specific position in the cell cycle based on the

data projection.

Applying TL in microscopy imaging in order to enhance the imaging is be-

coming very effective and being used in several recent researches. To produce

high-resolution slices of biopsy images from low-resolution ones, [52] suggest

a combined architecture that combines a unique transfer learning technique

and a deep super-resolution framework.

[53] introduces a versatile reconstruction method, ML-Structured illumina-

tion microscopy (SIM), which makes use of transfer learning to obtain a

parameter-free model that allows a doubling of image resolution at speeds

compatible with live-cell imaging.

[54] applied convolutional neural networks and transfer learning can be used

to identify cancer tissue from real-time in vivo imaging with confocal laser

microscopy In another research, Transfer learning was employed in the form



13

of fine-tuning.

[55] was able to effectively classify an image into four classes: normal, benign,

invasive carcinoma, and in situ carcinoma. They produced results with an

accuracy of 98.33 percent and sensitivity of 98.44 percent.

Importantly, the transferred knowledge does not always bring a positive im-

pact on new tasks. If there is little in common between domains, knowledge

transfer could be unsuccessful [17, 42, 56, 57].
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Chapter 3

Experimental Results

3.1 Pre-processing

Prior to diving into our primary outcomes, it’s critical to comprehend the

data and prepare it for further analysis. My research relied on a unique

publicly available comprehensive 3D cell imaging datasets (Full description

is available in Methods), from the Allen Institute of Cell Science [58]. The

Allen Institute genetically edited over 40 high quality-certified fluorescently

tagged human induced pluripotent stem cell lines (hiPSC) that target nine-

teen specific key cellular membrane-bound organelles and fundamental cel-

lular structured components [59, 60] and imaged them in their native condi-

tions and under several well characterized perturbations – a perfect dataset

to systematically characterize inter-organelle interactions.

The Allen institute genetically edited different cell lines, each with a different

key organelle fluorescently tagged. This dataset included images from nine-
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teen different gene edited human stem cell lines, each organelle sub-dataset

includes at least 350 3D images, each with a matching label-free (brightfield)

and a labeled (fluorescent) channel as well as two additional channels with la-

beled organelles that are common to all cells, the cell membrane and nucleus

(Fig.3.1).

(a) label-free (brightfield) (b) structure

(c) additional channel of la-
beled organelle nucleus.

(d) additional channel of la-
beled organelle cell membrane.

Figure 3.1: Representative middle slices of an image in our database, in this
case the structure imaged is endoplasmic reticulum. (a) In yellow is the
label-free (brightfield) channel. (b) In gray labeled structure of endoplasmic
reticulum. (c) In purple an additional channel of labeled organelle nucleus.
(d) In green an additional channel of labeled organelle cell membrane.

Not all organelles were centered at the same focal plane (z-axis). Under the

assumption that the most focused focal plane will result with a less blurred
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image we measured the standard deviation in pixel brightness across the

different imaged focal planes. While the majority of organelles, including

the nucleus, showed a normal distribution (Fig.3.2) of standard deviation

over the z-axis, some organelles showed non-normal distributions (Fig. 3.3)

because certain organelles are not located at the cell’s center (e.g., tight

junctions are located near the cell’s periphery). It became clear that top and

bottom image slices do not contain information regarding the organelles of

interest and thus they were discarded, leaving 40 z-slices around the cell’s

center (determined as the center z-slice of the nucleus) spanning 11.6 µm.

Figure 3.2: Standard deviation of pixel brightness per slice in z-axis for all
channels in images of the Nucleus DFC organelle showing the mid slice of
each channel correspondingly.

(a) Tight junctions (b) Mitochondria

Figure 3.3: Standard deviation of pixel intensities (y-axis) per slice in the
z-axis (x-axis in figure, “index of layer”) of bright-field (BF), nucleus (dna),
membrane, and an additional organelle (struct).
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Our data suffered from day-today-variability or batch effects that can be

caused by technical issues in the sample itself like difference in temperature,

light exposure or slight variance in the growth medium. Other reasons might

be, different imaging conditions or skills, as indicated by imaging days where

in-silico labeling performance deteriorated compared to other days (Fig. 3.4)

(chapter 4 Methods).

Figure 3.4: A comparison of mid slices of different images for the same struc-
ture, we can see that although the target image is looking very clear on both
images the network performs differently, due to batch effects.

We analyzed datasets from different days as described at length in (chapter

4) and ended up with the dates listed below to be excluded from the full

data-set (chapter 4 Methods, table 4.1).

:
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Structure Dates

Nuclear Envelope 08/05/2017, 09/05/2017, 12/05/2017
Endoplasmic-reticulum 28/07/2017

Actin-filaments 28/08/2017
Actomyosin-bundles 10/10/201,7 22/09/2017, 25/09/2017,26/09/2017

Tight-junctions 16/10/2017, 26/09/2017
Gap-junctions 06/03/2018 09/03/2018

Plasma-membrane 19/03/2018
Adherens-junctions 25/05/2018

Mitochondria 13/06/2017 , 09/06/2017
Desmosomes 19/07/2017 18/07/2017

Golgi 05/09/2017 , 25/08/2017, 29/08/2017
Centrosome 22/12/2017
Endosomes 12/10/2018

Table 3.1: Excluded days

Another criterion for exclusion was faulty images that were manually identi-

fied and discarded (Fig. 3.5).

Figure 3.5: A corrupted image that was manually identified and excluded
from our data set.



19

3.2 Reproducing Label Free and gaining a

deeper insight into this method

”For the things we have to learn before we can do them, we learn by doing

them.” -Aristotle. It is crucial to understand the tools we are about to apply

in this project. Therefore we reproduced Allen institute’s results by training

models to predict organelles location from Bright Field (BF) images using

the Allen institute fluorescently tagged images [1]. As presented in (Fig. 3.6)

The models performance is very similar, slight variations may be seen due to

variations in images used to train and test the models. Since the paper [1]

was released more structures have been imaged and so we trained models for

these structures (Fig. 3.7(a)). Examples of such predictions are presented in

(Fig. 3.8(b)).
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(a) Our reproduction of
the Label-free method.

(b) The corresponding results
that were published in [1].

Figure 3.6: Distributions of the image-wise Pearson correlation coefficient (r)
between ground-truth (target) and predicted test images derived from the
indicated subcellular structure models. Each target/predicted image pair in
the test set is a point in the resultant r distribution; the 25th, 50th, and 75th
percentile image pairs are spanned by the box for each indicated structure,
with whiskers indicating the last data points within 1.5× the interquartile
range of the lower and upper quartiles. The number of images in the test set
was 10 for all distributions. (a)Our reproduction of the Label-free method.
(b) The corresponding results that were published in [1].
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(a) Full asessment (b) Representative labeled structure
models and model predictions for
3D transmitted-light microscopy.

Figure 3.7: Extension of our reproduction of Label-free. (a) Data for the
recreation was constructed with batch effects consideration, excluding images
from problematic imaging days. (b) Representative labeled structure models
and model predictions for 3D transmitted-light microscopy.

We trained models without considering batch effects to better comprehend

the data as well as the constraints of the label free approach. The predictions

of these models showed lower correlations in label free predictions. This

analysis yielded a decline of 5.7 percent on average in accuracy (Fig. 3.8(a)).

When comparing (Fig. 3.7(a)) and (Fig. 3.7(a)) the most notable impact

was seen in organelles that are in the middle of the accuracy range, such as

Tight Junction and Lysosome, while organelles at the extremes of the range,

such as Desmosomes and Endosomes, on the low range, and Nucleus and

Actin Filaments on the high range, showed little to no change.
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(a) Partial results as ex-
plained in section C.

(b) The corresponding results to
(a) that were published in [1].

Figure 3.8: (a) Reproduction of Label Free without consideration of batch
effects: the training dataset includes images from batch effect prone imaging
days. (b) Representation of the variation in the models’ performance with
regard to the batch effect. The performance of the model that takes batch
effects into consideration is significantly improved.

Not only the batch effect has an impact on this method but also it seems

that there is a pattern where different groups of organelles are performing

differently. Interestingly,the term of “stereotypy” -The extent to which a

structure’s individual location varied; was actually a side result of a larger

research [28]. The aim was to develop generalizable, quantitative methods

that permit direct comparison of the similarity of overall cell and nuclear

shapes for 3D cell image data and achieve a simple and human-interpretable

“shape space”. They developed A cell and nuclear shape-based coordinate

system using a Principal Component Analysis (PCA)-based dimensional re-

duction approach. By Aligning all cells to their centroids. By morphing the

parameterized intensity representation of each cell into the idealized cell and

nuclear shape representing a nearby map point location in the shape space,

they created a ‘morphed cell’.

To measure how variable the location of each individual structure is within
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the cell, required to calculate the 3D voxel-wise Pearson correlation between

pairs of individual morphed cell images for each of the 25 cellular structures

(Fig. 3.9(a)). Averaging those correlation values to generate a measure of the

“location stereotypy” of each structure. Structures with a high stereotypy

value have little cell-to-cell variation in their overall absolute positions for

similarly shaped cells. Structures with a low stereotypy value may be found

in distinct locations even for two cells whose shapes are very similar.

In (Fig. 3.9(b)) the correlation between organelle stereotypy and the per-

formance of the model predicting this organelle is clear. The explanation is

simple, if an organelle tends to appear in a fixed location it will be much

easier to locate it then an organelle that may appear anywhere without any

constraints. According to this reasoning, we expect that models that predict

the more stereotypic organelles probably are able to do so by exploring and

locating the immediate surroundings and neighbors of the structure, whereas

for the less stereotypic structures, the model would probably have hard time

finding such clues.

While batch effects are a general problem that affected the entire dataset,

it is clear from the in-silico method that organelles that are more stereo-

typical, like plasma membrane and micro tubules, are less affected by this

phenomenon and are maintaining high performance even when under the in-

fluence of batch effects, which is not the case for an organelle like a lysosome

and tight junction.
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(a) Box plots correspond
to the values of the

correlation for each of
the 25 cellular structures.
Figure adapted from [28]

(b) Each organelles’ in silico results are matched
with the stereotypicality score it achieved. Show-
ing high correlation between high performing

models and stereotypicality of organelles location.

Figure 3.9: Correlation between the location stereotypy and Pearson score
for the in silico labeling results.

Further researching the models ability to exploit the structures’ immediate

environment led us to explore the impact perturbation have on the map-

ping between bright-field to the fluorescent label of that structure: We were

interested in how the model’s performance represented the effect that the

drug has on the organelles’ structural composition. To address this we have

assessed the effects of various alterations on an organelle’s structure and eval-

uated the effects of those changes on the prediction. Our hypothesis is that

after the cells are perturbed the mapping between bright-field to fluorescent

of that structure is also altered, making the models predictions inaccurate.

The Allen Institute created a small data-set of various structures that were

exposed to six different drugs using the Allen Cell Collection. Since Tight

Junction was the only structure where we could visually see the impact of
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the drugs (as explained in Methods), we only tested three drug types that

had visually distinct (Fig. 3.10(b)) structural effects on the structure. Un-

derstanding the drugs’ mechanisms was crucial for understanding the results,

The drugs are listed by the magnitude of the effect from minor to major:

• Brefeldin A- expected to see very little change if any.

• Blebbistatin- expected to see a decrease in correlation.

• Staurosporine- e expected to see a great decrease.

The results (Fig. 3.10) reflect that in-silico labeling performed worse after

structure changing drug exposure, reinforcing our hypotheses the mapping

from bright-field to the fluorescent target (TJ) has changed. This could be

caused by direct change in TJ or because of changes in the surroundings and

other organelles that the model is using to determine the TJ.
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(a) Distributions of the image-wise Pearson correlation coefficient (r) between
ground-truth (target) and predicted test images derived from the Tight junction
subcellular structure model for data sets that were introduced to three different
drugs compared with the control baseline (original); Blebbistatin, Berfeldin,
and Staurosporine (Methods). Each target/predicted image pair in the test

set is a point in the resultant r distribution; The number of images in the test
set was 10, 14, 25, 5 correspondingly, and according to data availability. (All

predictions were calculated using the original model only changing the test set).

(b) Examples of structure from control and perturbed samples. Top
images are the ground truth, bottom are the predictions. From
left to right: control, Blebbistatin, Brefeldin, and Staurosporine.

Figure 3.10: Evaluation of drug perturbation impact on predictions.

We had to challenge our growing intuition regarding the mapping between
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bright-field to the fluorescent label heaving to do great deal with spatial de-

pendencies, and look into individual morphological properties of the different

structures. Erosion is one of the fundamental operations in morphological

image processing. We define sturdy structures structures that are more re-

sistant to erosion are . We wanted to measure the correlation between the

steadiness of a structure and its performance in in-silico labeling. We were

not able to measure significant correlation (Fig. 3.11).
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(a) Effects of erosion on morpholog-
ically different structures, tested on
three distinct organelles: Nucleus,
Tight Junction, and Mitochondria.
Over the period of ten iterations.
On the left is a representing image
of the organelle. On the right is
the representation of the fading

pixels. In each iteration measured
the percent of pixels left with
regards to the initial amount.

(b) Effects of erosion on all different
structures. In each iteration

measured the percent of pixels
left with regards to the amount
at the previous step. Nuclear

Envelope, nucleouse DFC, plasma
membrane, nucleouce GC, Lysosome

and Microtubules are the most
sturdy structures in this order.

(c) Sturdiness, or resistance to erosion (orange dots) is plot-
ted in context of the organelle’s in-silico labeling performance.
The sturdiness here is the results after one iteration of erosion.

Figure 3.11: Exploration of individual morphological properties of the differ-
ent structures.
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3.3 POC- Validating our approach on a well-

known biological system composed of a

small subset of structures

With the growing conviction that the mapping between bright-field to the

fluorescent label of the structure has to do a great deal with spatial depen-

dencies with its neighbors. We started thinking about how to measure it, and

even pinpoint these neighbors. To make this POC more focused we chose a

simple subset of three organelles that we know have a very significant role in

cells’ function and are spatially dependent. Based on the Central dogma of

molecular biology, Nuclear envelope, Endoplasmic Reticulum (ER) and the

Golgi apparatus, are the main players in cell protein production. The DNA

contains the instructions for all proteins synthesized in the cell, contained in

the nucleus bound by the nuclear envelope. Proteins created in the cell begin

by being copied from the DNA, it is translated into a protein and folded in

the ER [61], finally in the Golgi apparatus it is modified to its functional

structure and packaged for transporting to its target destination [62].

In order to assert the best practices for our work, we executed a few supple-

menting analysis regarding our approach to Label-free. It was evident from

the images that the third dimension contains some redundant slices that lack

labeled information on the extremities. In the reprocessing, we experimented

with only keeping the slices with the structure and reduced the image to fit

into 40 z slices (Fig. 3.12). It’s interesting to note that smaller structures

did perform better in this format, while larger ones didn’t or even showed
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decline. We hypothesize that the reason being the reduction of the reference

area of the cell’s perimeter for organelles that are large and dispersed across

most of the cell’s content. Our hypothesis is that this area is important for

the model to predict the location of such structures. Over all the changes

weren’t of great significance thus we decided to continue working with whole

z-axis range.

Figure 3.12: Assessment of image centering impact. Distributions of the
image-wise Pearson correlation coefficient (r) between ground-truth (target)
and predicted test images derived from the indicated sub-cellular structure
models for the same data set in two variations; Whole image, 70 z-axis slices,
and a cropped version with 40 z-axis slices containing the whole structure
(indicated by center). Each target/predicted image pair in the test set is
a point in the resultant r distribution; The number of images in the test
set was 10 for all distributions. Data for the recreation was constructed with
batch effects consideration, excluding images from problematic imaging days.
Comparing three distinct structures: Nuclear envelope (NucEnv), Endoplas-
mic reticulum (ER), and Golgi apparatus (Golgi).

Considering the training set size, we found that training models on 30 photos

was sufficient and more training images did not improve our models (Fig.

3.13), in concurrence with [1].
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Figure 3.13: Evaluation of data volume’s effects on training. Distributions
of the image-wise Pearson correlation coefficient (r) between ground-truth
(target) and predicted test images derived from the indicated sub-cellular
structure models for the same data set in five variations; Baseline in 30 im-
ages, 50, 100, 150, and 200. Each target/predicted image pair in the test set
is a point in the resultant r distribution; The number of images in the test
set was 100 for all distributions. Comparing three distinct structures: Nu-
clear envelope (NucEnv), Endoplasmic reticulum (ER), and Golgi apparatus
(Golgi).

Despite the fact that there are undoubtedly still many more questions about

the methods we employ, we had to continue and reach the objective of our

research. In order to bootstrap the in-silico method to our advantage the

question we had to answer was: how much information that is learned by

one model about an organelle contributes to the prediction of another? To

answer this question we applied Transfer Learning; first, we trained a model

to predict organelle A, then we trained a second model to predict organelle

B initiating it with the weights of the first model (Fig. 3.14). If the second

model is superior to a model trained directly to predict organelle B, then

we can suggest that the spatial information of organelle A contributes to the

prediction of organelle B, and that B is spatially-dependent on A (Methods).
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(a) Top row represents the process of
a label free model, trained predicting
the fluorescent labeling of organelle A
from a bright field unlabeled image,
resulting in a model we annotate as
follows: MBF→B. The bottom raw
represents the process in which the
weights of MBF→B are loaded into
a new model yet to be trained, which
then is trained in a similar fashion
to predict a different organelle B,

in this instance the model has some
previously learned insights which are
applied in this new task, we annotate
the resulting model as: MA

BF→B.

(b) Analyzing the average
person correlation of prediction
of structure B with transfer
learning from structure A
and without, if the model

with transfer learning showed
significant improvement we
conclude that the location
of B is depending on the
location of A, notice this

dependency is not isomorphic.

Figure 3.14: Schematic of our approach for exploring and quantifying the
spatial dependencies between organelles.

Using this architecture and applying it on the subset we chose, we trained

models representing all the combinations of pairs of organelles, keeping in

mind that the relations are not isomorphic. We expected to see that Nuclear

Envelope would influence both Golgi and ER, ER would influence Golgi, and

Golgi wont influence the other organelles based on the biological mechanisms

mentioned above. The results confirmed our assumptions as shown in (Fig.

3.15). We measured the the percent of improvement in relation to the base
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model.

(a) Analysis of the results of our POC
represented as a heat map, x-axis
represents the structure on which
we trained our models, y-axis is the

structure of which weights were used to
transfer. The map shows the percent
of improvement each model achieved.
The measurement of improvement:

positive change in correlation (PCIC)
is as fallows: PCIC = diff

1−MA
BF→B

where - diff = MA
BF→B −MA

BF→B

(b) A weighted directed
graph, representing the
spatial interactions. The

arrows represent the direction
of influence, for example
the location of Golgi is

influenced by Nuclear envelope.
The color represents the
magnitude of the impact.

Figure 3.15: The interplay between the nuclear envelope, endoplasmic retic-
ulum (ER), and Golgi.

To validate our results we tested our networks with other images. We have

chosen 100 images in a random manner. We predicted the location of the

organelles with the basic models and compared the results with predictions

of the same 100 images on our TL models(Fig. 3.16). We see that the same

trends are consistent with the previous results. This time we also present

negative influence that we observed (Explained in Methods).
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Figure 3.16: Analysis of the statistically significant results of our POC rep-
resented as a heat map was used to construct Fig. 24, x-axis represents the
structure on which we trained our models, y-axis is the structure of which
weights were used to transfer. The map shows the percent of improvement
and negative effects each model achieved. This time each model was tested
on a set of 100 images (negative TL is explained in Methods).

After validating our hypothesis with this small sub-set of structures, and

before moving to a bigger scale of experiments it was important to examine

the statistical significance of this changes. Using the Wilcoxon signed-rank

test for each sample we evaluated the significance of the change by calculat-

ing the p value and considered significant only results that had p-score less

than 0.05. At This point we wanted to incorporate more structures to our

experiments, we extended our sub set to 12 structures, measuring the effects

on the main three we did so far (Fig. 3.17). This analysis shows that the

majority of the changes are significant. Another intriguing finding from this

analysis was the observation that the prediction of nuclear envelopes is not

improved by this approach; this is because the nuclear envelope is a very

large and stereotypical structure with excellent results right away. Remem-

bering the findings from Fig. 3.12, where we came to the conclusion that the

information in the peripheral areas of the cell are necessary for this model,
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these results make sense. It may be the case that the additional information

only serves to distract the model from the structure.

(a) Golgi (b) Endoplasmic reticulum

(c) Nuclear envelope

Figure 3.17: Analysis of significance of our results. Each figure shows the
comparison of the performance of the control model (x-axis) with models
that were pre trained (y-axis) on organelles as indicated in the legend, color
coded, the significance of the results is also indicated in the legend with the
p value.

3.4 Main results

After the promising first results we were eager to see what other connections

we are capable of finding. We increased the amount of organelles until we had

a manageable yet versatile collection. We chose 14 organelles with distinct

features and trained all the combinations of target and source TL models.
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Figure 3.18: Analysis of the results represented as a heat map, x-axis repre-
sents the structure on which we trained our models, y-axis is the structure
of which weights were used to transfer. The map shows the percent of im-
provement and decline each model achieved.

Looking at the results (Fig.3.18), we can see that there are mostly negative

relations, which is a known phenomenon in TL, negative TL (as discussed

in methods). It is usually explained as occurring when the divergence be-

tween the joint distributions of target and source data sets is very significant.

Our hypothesis is that either this indicates organelles that are not spatially

strongly correlated or the structural characteristics are so distinct that the

model is not capable of making the transition. It is also possible that the

source structure is not in correlation with the main areas the target structure

is using and thus distracts it from his optimal solution. In (Fig. 3.19) is a di-

rectional and weighted graph of normalized relations between the organelles,

it is a simplified and intuitive representation of organelle-organelle spatial
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dependencies. Such that nodes are representing the organelles and the ver-

tices are weighted( represented with colour) and have directions showing who

is the source or target. There were a few organelles that did not contribute

significant positive connection, thus they are not participating in the graph.

Now we have an explicit representation of the connections that were learned

via our method. Looking into some biological possible rationalizations we

found the following phenomena, explained here in a very simplified manner.

• Actin filaments → Tight Junction, is highlighted in the following pa-

pers, structural formation of actin is necessary for the functional for-

mation of tight junction [63] [64] [65] [66] [67].

• Adherens Junction ← Golgi ↔ Tight Junction, Golgi-associated en-

zyme regulates the transport of transmembrane junction proteins through

or from the Golgi, thereby controlling the integrity of endothelial cell–cell

junctions [68] [67].

• ER→ Golgi, “Newly synthesized proteins are transported from the en-

doplasmic reticulum via the Golgi to the trans-Golgi network.”,”Golgi

stack is associated with a single endoplasmic reticulum (ER) exit site,

forming a secretory unit.” [66] [69]

• Nuc → Golgi, [69]

• Golgi→ lysosome, Fragmentation of golgi changes the location of lyso-

some [70].



38

Figure 3.19: Organelle-Organelle interaction network. A weighted directed
graph, representing the spatial interactions. The arrows represent the direc-
tion of influence, for example the location of Golgi is influenced by Nuclear
envelope. The color represents the magnitude of the impact.
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One of the intersting results we have come across was the Tight Junction

and Golgi bidirectional spatial dependencies (Fig. 3.20), its a unique result

because the relation between these two organelles is almost symmetric. We

found evidence [67], [68], [66] that these relations are known and researched.

(a) Analysis of the results represented
as a heat map, x-axis represents the
structure on which we trained our

models, y-axis is the structure of which
weights were used to transfer. The map
shows the percent of improvement each
model achieved compared with a model
without the use of transfer learning.

(b) Directed weighted graph
representing the influence
of TL on the performance
of each structure Golgi on
the left, and tight junction

(TJ) on the right. The weight
is represented with color

gradients matching the map.

Figure 3.20: Tight junction and Golgi demonstrated bidirectional almost
symmetric influence on one another.

Each image in our data set also contains two extra channels, representing the

cell membrane and the nucleus, as was previously mentioned. Exploiting this

underpinning new data collection provided a fantastic chance to advance our

investigation. It was put to use in two separate ways. One extended our data

set by using these additional channels as ”stand alone” data and applying

them to train models of new organelles. Practically, we only required two

models to be trained—one for each organelle—but comparing these mod-
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els was interesting. We can observe from the results that the models were

highly variable (Fig. 3.22), most likely because we neglected to examine the

performance of these organelles when looking for batch effects.

(a) Membrane (b) Nucleus

Figure 3.21: Representative evaluation of the in-silico labeling for the addi-
tional channels each image contains. Distributions of the image-wise Pearson
correlation coefficient (r) between ground-truth (target) and predicted test
images derived from the indicated sub-cellular structure models from data
sets of five organelles; Actomyosin bundles, Desmosomes, Golgi, Mitochon-
dria and Nuclear DFC. Each target/predicted image pair in the test set is a
point in the resultant r distribution.

Due to this, we selected the best model, which, interestingly, came from the

mitochondria data set for both structures. And evaluated to see what impact

these structures had on the rest of our data.
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(a) Membrane (b) Nucleus

Figure 3.22: Analysis of the results represented as a heat map, y-axis repre-
sents the structure on which we trained our models, x-axis is the structure
of which weights were used to transfer(opposite from previous). The map
shows the percent of improvement and decline each model achieved. in each
map on the left are models that were pre-trained previously on the same BF
images, on the right is the best performing model that was pre-trained on
the mitochondria data set.

It was interesting to observe that the networks that were trained on the same

BF images twice essentially, but with two different tasks resulted in a more

significant decrease in performance. Also it was interesting to see that the

Adherence junction benefited in both cases, while the Golgi only benefited

from the Nucleus.

We see that additional channels are beneficial especially in similar organelles,

for instance the nucleus improved results for the different nucleus structures

while cell membrane improved the results of Plasma membrane.

Another method involved using additional real channels as an input for the

model, resulting in two input channels, BF and additional organelle. Each

time using a different channel.
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(a) Schematic of the second
approach. Left column represents
the process of feeding a model with
two input channels, bright field
unlabeled image and fluorescent
labeling of organelle B. The right
column represents the output

predicting the fluorescent labeling
of organelle A. We annotate the
resulting model as: MBF+B→A.

(b) Analysis of the results represented
as a heat map, y-axis represents the

structure on which we trained our models,
x-axis is the structure that was fed to the
network as an additional channel. The
map shows the percent of improvement
and decline each model achieved. The
left column was presented with two BF
channels, the middle with the additional
Nucleus and the right with the membrane.

Figure 3.23: Evaluation of introduction of two channels as an input for the
model.

We see that additional channels are majorly beneficial especially in similar

organelles, for instance the nucleus most significantly enhance results for

the different nucleus structures while cell membrane impacts the results of

Plasma membrane, Adherence junction and Tight junction the most. Its

also interesting to see that even when we add another BF channel, meaning

no new information was added this method managed to improve in-silico

labelling.

When comparing the two methods, it becomes clear that they are very dif-

ferent from one another. The TL method works by utilizing spatial relations

between organelles as evidenced by the improved performance on spatially-
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related organelles. On the other hand, we suspect that the additional channel

method improves performance globally by providing the model with visual

“hints” for each sample. That is, it provides the model with additional signal

from the specific cells being predicted.
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Chapter 4

Methods

4.1 Dataset description

Dataset description

Our data is Three-dimensional live cell microscopy. The 3D light microscopy

data used to train and test the models consists of z-stacks of colonies of

human embryonic kidney cells available at (see http:// www.allencell.org).

Genome-edited (hiPSC) lines expressing a protein endogenously tagged with

fluorescent protein (mEGFP) or red fluorescent protein (mTagRFP) that

localizes to a particular subcellular structure. The EGFP-tagged proteins

and their corresponding structures are: -tubulin (microtubules), -actin

(actin filaments), desmoplakin (desmosomes), lamin B1 (nuclear envelope),

fibrillarin (nucleoli), myosin IIB (actomyosin bundles), sec61B (endoplasmic

reticulum), STGAL1 (Golgi apparatus), Tom20 (mitochondria), and ZO1

(tight junctions). The cell membrane was labeled by expression of mTagRFP.
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All cell types were imaged for up to 2.5 h on a Zeiss spinning disk microscope

with ZEN Blue 2.3 software and with a 100× /1.25-NA (numerical aperture)

objective (Zeiss C-Apochromat × 100/1.25 W Corr), with up to four 16-bit

data channels per image: transmitted light (either bright-field or DIC), cell

membrane labeled with CellMask, DNA labeled with Hoechst, and EGFP-

tagged cellular structure. Z-slice images were captured at a YX resolution of

624 × 924 px2 with a pixel size of 0.108 µm px–1, and 63×-objective z-slice

images were captured at a YX resolution of 1,248×1,848 px2 with a pixel

scale of 0.086 µm px–1. All z-stacks were composed of 50–75 z-slices with an

inter-z-slice interval of 0.29 µm. Each Image contained 10–30 cells.

The data used to train and evaluate the models (Methods) based on 3D live-

cell z-stacks, including train-test data splits. All multi-channel z-stacks were

obtained from a database of images produced by the Allen Institute for Cell

Science’s microscopy pipeline (see http:// www.allencell.org).

Table 4.1: Data Dictionary: Listing for each of the 19 different structures
available, the name of the protein that was used for in-silico labeling, the
name of the structure, the amount of images available, and the imaging
dates. The total number of available images is 11023.

Protein

Names

Structure #Of

Images

Imaging Dates

Alpha-

actinin-1,

Beta-actin

Actin fila-

ments

844 20180320, 20180323 ,20180326, 20180327,

20180330, 20180402, 20180403, 20180316,

20170919, 20170818, 20170828, 20170822

Continued on next page
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Table 4.1 – Continued from previous page

Protein

Names

Structure # Of

Images

Imaging Dates

Non-muscle

myosin heavy

chain IIB

Actomyosin

bundles

426 20170925, 20171023, 20171010, 20170926,

20170922, 20171017, 20171020

Beta-catenin Adherens

junctions

590 20180515, 20180521, 20180514, 20180522,

20180525

Centrin-2 Centrosome 492 20171222, 20171219, 20180119, 20180122,

20171212, 20180123, 20171208, 20180112

Desmoplakin Desmosomes 712 20170725, 20170718, 20170717, 20170726,

20170722, 20170808, 20170807, 20170724,

20170814, 20170728, 20170719, 20170721

Sec61 beta Endoplasmic

reticulum

347 20170811, 20170818, 20170807, 20170815,

20170728, 20170821, 20170804

Ras-related

protein

Rab-5A

Endosomes 374 20181001, 20181005, 20181009, 20181012

Connexin-43 Gap junc-

tions

461 20180306, 20180309, 20180319, 20180320,

20180312, 20180313, 20180316

Sialyltransferase

1

Golgi 449 20170829, 20170918, 20170901, 20170912,

20170905, 20170825, 20170915

Continued on next page
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Table 4.1 – Continued from previous page

Protein

Names

Structure # Of

Images

Imaging Dates

LAMP-1 Lysosome 603 20171023, 20171106, 20171110, 20171113,

20171103, 20171030

Paxillin Matrix

adhesions

435 20180409, 20180416, 20180417

Alpha-tubulin Microtubules 570 20170317, 20170331, 20170307, 20170310,

20170328, 20170306, 20170321, 20170227,

20170327, 20170301, 20170324, 20170320,

20170314, 20170303

Tom20 Mitochondria 1078 20170614, 20170626, 20170628, 20170612,

20170627, 20170623, 20170613, 20170712,

20170620, 20170609, 20170705, 20170619,

20170621, 20170616, 20170630

Lamin B1 Nuclear en-

velope

1017 20170519, 20170607, 20170530, 20170522,

20170523, 20170526, 20170606, 20170509,

20170515, 20170512, 20170531, 20170524,

20170508

Fibrillarin Nucleolus

(DFC)

608 20171027, 20171103, 20171031, 20171114,

20171117, 20171120, 20171110, 20171020

Nucleophosmin Nucleolus

(GC)

811 20180430, 20180501, 20180504, 20180507,

20180508, 20180511

Continued on next page
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Table 4.1 – Continued from previous page

Protein

Names

Structure # Of

Images

Imaging Dates

Peroxisomal

membrane

protein

PMP34

Peroxisomes 372 20180928, 20181002, 20181008, 20181029,

20181030, 20181016, 20181116

CAAX

domain of

K-Ras

Plasma

membrane

498 20180312, 20180313, 20180316, 20180319,

20180323, 20180326, 20180327

Tight

junction ZO-1

Tight junc-

tions

336 20171002, 20171016, 20171024, 20171009,

20170926

TOTAL 11023

The Allen institute generated a small data-set in order to identify signature

profiles of cellular organization for a range of well-characterized agonists and

antagonists commonly used to perturb1 specific cellular processes or path-

ways.

To do this, they used the cells from the Allen Cell Collection (7 different

structures) introducing them to 6 different drugs. Since Tight Junction (TJ)

was the only structure where we could visually see the impact of the drugs,

we mainly tested three different drug types on it.

1“Perturbation is an alteration of the function of a biological system by external or
internal means such as environmental stimuli, drug inhibition, and gene knockdown” [71].
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• Blebbistatin- (S)-nitro blebbistatin (SNB), inhibits the non-muscle myosin

II ATPase. (S)-nitro blebbistatin also produced a reorganization of the

tight-junction protein ZO-1, with fragmentation of the cortical ring

near the apical surface and redistribution throughout the entire vol-

ume of the cell.

• Brefeldin A- Inhibits protein transport from the endoplasmic reticu-

lum to the golgi complex indirectly by preventing association of COP-I

coat to the Golgi membrane [72]. It fragmented the Golgi apparatus,

(which we know is connected to the TJ functionality) into multiple

foci dispersed throughout the cell volume within 30 min of treatment.

This fragmentation is similar to that normally observed during mitosis.

None of the other structures studied showed major changes.

• Staurosporine- The main biological activity of staurosporine is the inhi-

bition of protein kinases through the prevention of ATP binding to the

kinase. This is achieved through the stronger affinity of staurosporine

to the ATP-binding site on the kinase. Staurosporine is a prototypical

ATP-competitive kinase inhibitor in that it binds to many kinases with

high affinity, though with little selectivity [73]. Staurosporine induced

re-localization of ZO-1 from a tightly localized band near the apical

surface to a broader distribution throughout the cell surface.

To identify the center of each image we measured the standard deviation of

pixel intensities across the z-planes. s =
√

1
N−1

∑N
i=1(xi − x)2

High SD in a specific z-slice implies high variation in pixel intensities that
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can be interpreted as the presence of an organelle. The slice with the highest

standard deviation in the nuclear channel was correlated with the center of

the cell and this observation was used to localize the cell’s center. Using

the same approach we identified that all other organelles were located within

a radius of 5.8 µm, thus we kept the 40 slices around the cell’s center and

excluded the rest ( 30% of data).

4.2 Day-to-day variability (batch effects)

Analysis of batch effects which is the issue of day to day variability was

necessary. The data was collected over a period of many months. Different

days of imaging cause high variation in the conditions, such as lighting, ad-

justment of the equipment and of course the quality of the fluorescent labels

and the behavior of the cells on the plate as well as many others. To make

sure the results are not affected by these factors we made an analysis of the

different imaging days with the purpose of pinpointing problematic days that

may have an impact on the performance of the models that is due to poor

imaging data. We excluded days with measurable batch effects defined as

follows, our dataset includes 4 days per organelle for each organelle and each

day we partitioned the data to train set of 30 images and test set of 10 images

in two ways, defining two corresponding models:

• M1 - Train set from three days, test set from the remaining day. This

ensures that there is no data-contamination in terms of the daily batch

effects.
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• M2 - Train set from all days, the model enjoys information regarding

the day at test.

We evaluate M1(I) versus M2(I) where I is an image from the day of the test.

Days with non-parametric Wilcoxon rank-sign test p-value ¡ 0.05 (where M2

surpasses M1) were excluded because the information about the day was

helpful during training, and it implies that this day was distinct from the

others.

Figure 4.1: Assessment of batch effects. Each panel shows batch effects for
a different organelle. Each color represents a different imaging day, and each
data point represents an image. X-axis is the cross correlation coefficient
when the training set includes images from the same imaging day (not the
images at test, but with data leakage). Y-axis is the matched cross correlation
coefficient when the training set was blind to the imaging day at test (no
contamination). Batch effects were characterized by data points below the
reference Y = X line. A subset of days suffering from batch effects, days that
were affected by batch effects (e.g., orange markers at the most bottom-right
panel) were excluded from further analysis.
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4.3 Models

Model architecture description and training: Due to its proven effectiveness

in image segmentation and tracking tasks, we used a Convolutional Neural

Network (CNN) based on the U-Net architecture (Fig. 4.2). In general,

because they are image-translation invariant, learn complex nonlinear rela-

tionships across multiple spatial areas, do not require the development of

data-specific feature extraction pipelines, and are simple to implement and

train, CNNs are especially effective for tasks involving images (such as clas-

sification, segmentation, and image-to-image regression).

CNNs have been shown to outperform other state-of-the-art models in ba-

sic image recognition [74] and have been used in biomedical imaging for a

wide range of tasks including image classification, object segmentation [75]

and estimation of image transformations [76]. This U-Net variant consists

of layers that perform one of three convolution types, followed by a batch

normalization and rectified linear unit (ReLU) operation. The convolutions

are either 3-pixel convolutions with a stride of 1 pixel on zero-padded input

(such that the input and output of that layer are the same spatial area),

2-pixel convolutions with a stride of 2 pixels (to halve the spatial area of

the output), or 2-pixel transposed convolutions with a stride of 2 pixels (to

double the spatial area of the output). There are no normalization or ReLU

operations on the last layer of the network. The number of output channels

per layer is shown in (Fig. 16). Our 3D models use 3D convolutions.

Owing to memory constraints associated with graphics processing unit com-

puting, we trained the model on batches of 3D patches (64 × 64 × 32 px3,
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YXZ), which were randomly subsampled uniformly both across all training

images and spatially within an image. The training procedure took place

in a typical forward–backward fashion, with model parameters updated via

stochastic gradient descent (backpropagation) to minimize the MSE between

output and target images. The models were trained using the Adam opti-

mizer [77] with a learning rate of 0.001 and with beta values of 0.5 and 0.999

for 50,000 mini- batch iterations. We used a batch size of 16 for the models

due to hardware restrictions, the memory on some of our GPUs was a little

low. Running on one of the following machines: titan gtx, rtx2080, gtx1080,

rtx3090, rtx3090, each model completed training in approximately 16 to 26

h.

For prediction tasks, we minimally crop the input image such that its size in

any dimension is a multiple of 16, to accommodate the multi-scale aspect of

the CNN architecture. Prediction Three-dimensional light microscopy model

results analysis and validation. For our 3D light microscopy applications,

model accuracy was quantified by the Pearson correlation coefficient between

the pixel intensities of the model’s output, y, and independent ground- truth

test images, x : r =
∑

(x−x)(y−y)√∑
(x−x)2

∑
(y−y)2

.
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Figure 4.2: Schema of the model’s composition. There are no batch nor-
malization or ReLU layers on the last layer of the network, and the number
of output channels per layer is shown above the box of each layer. Figure
adapted from Lecture Notes in Computer Science 234–241 (2015).

4.4 Transfer learning

Transfer learning (TL) is a method used to transfer knowledge acquired from

one task to resolve another[16]. For instance, before learning to fly a real

airplane, pilots use a variety of simulations, such as video games, to gain

prior skills, knowledge, and experience.

In the context of machine learning, By transferring the knowledge found in

various but related source domains, TL seeks to increase the performance

of target learners on target domains [16], [39], [40], [41]. This is very useful

when data in the target domain is scarce and it is not possible to train a

good model with it, so TL gives the model a head start. Sometimes TL is

also used to direct the model in a specific direction when the target task is

not easily deducible from the target data.
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The idea of transfer learning was first discussed in the context of education

in the last century, it was first considered in a computational context in

1995, and went through conceptual refinement in 2005 to the manner that

we comprehend it today [44].

Inductive transfer learning, transductive transfer learning, and unsupervised

transfer learning are the three subsettings most frequently used to classify

transfer learning, depending on the circumstances between the source and

target domains and tasks. [44].

Regardless of whether the source and target domains are the same or not, the

target task in the context of inductive transfer learning differs from the source

task. To create an objective prediction model for usage in the target domain

in this situation, some labeled data from the target domain are necessary.

Additionally, based on various circumstances involving labeled and unlabeled

data in the source domain, we can further categorize the inductive transfer

learning setting into two cases:

• a. There is a sizable amount of labeled data in the source domain. In

this case, the multitask learning setting and inductive transfer learning

are analogous. Multitask learning attempts to learn the source and

target tasks simultaneously, whereas inductive transfer learning simply

aspires to achieve high performance in the target task by transferring

knowledge from the source task.

• b. No labeled data in the source domain are available. In this case, the

inductive transfer learning setting is similar to the self-taught learn-

ing setting, which was first proposed by Raina et al.[78]. In the self-
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taught learning setting, the label spaces between the source and target

domains may be different, which implies the side information of the

source domain cannot be used directly. Thus, it’s similar to the in-

ductive transfer learning setting where the labeled data in the source

domain are unavailable.

In the transductive transfer learning setting, the source and target tasks

are the same, while the source and target domains are different. In this

situation, no labeled data in the target domain are available while a lot of

labeled data in the source domain are available. In addition, according to

different situations between the source and target domains, we can further

categorize the transductive transfer learning setting into two cases.

• a. The feature spaces between the source and target domains are dif-

ferent.

• b. The feature spaces between domains are the same, but the marginal

probability distributions of the input data are different. It is related

to domain adaptation for knowledge transfer in text classification, and

sample selection bias.

Finally, in the unsupervised transfer learning setting, similar to the inductive

transfer learning setting, the target task is different from but related to the

source task. However, the unsupervised transfer learning focuses on solving

unsupervised learning tasks in the target domain, such as clustering, dimen-

sionality reduction, and density estimation [79], [80]. In this case, there is no

labeled data available in both source and target domains in training.
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Approaches to transfer learning in the above three different settings can be

summarized into four cases based on “What to transfer”.

• The first context can be referred to as instance-based transfer learning

(or instance transfer) approach [45], [46], which assumes that certain

parts of the data in the source domain can be reused for learning in the

target domain by reweighting. Instance reweighting and importance

sampling are two major techniques in this context.

• A second case can be referred to as feature-representation-transfer ap-

proach [78], [81]. The intuitive idea behind this case is to learn a “good”

feature representation for the target domain. In this case, the knowl-

edge used to transfer across domains is encoded into the learned feature

representation. With the new feature representation, the performance

of the target task is expected to improve significantly.

• A third case can be referred to as parameter-transfer approach [82], [83],

which assumes that the source tasks and the target tasks share some

parameters or prior distributions of the hyperparameters of the models.

The transferred knowledge is encoded into the shared parameters or

priors. Thus, by discovering the shared parameters or priors, knowledge

can be transferred across tasks.

• Finally, the last case can be referred to as the relational knowledge-

transfer problem [84], which deals with transfer learning for relational

domains. The basic assumption behind this context is that some rela-

tionship among the data in the source and target domains is similar.
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Thus, the knowledge to be transferred is the relationship among the

data.

Transferred knowledge does not always bring a positive impact on new tasks.

If there is little in common between domains, knowledge transfer could be

unsuccessful [56]. For example, learning to ride a bicycle cannot help us learn

to play the piano faster. Besides, the similarities between domains do not

always facilitate learning, because sometimes the similarities may be mislead-

ing. For example, although Spanish and French have a close relationship with

each other and both belong to the Romance group of languages, people who

learn Spanish may experience difficulties in learning French, such as using the

wrong vocabulary or conjugation. This occurs because previous successful

experience in Spanish can interfere with learning the word formation, usage,

pronunciation, conjugation, and so on, in French. In the field of psychology,

the phenomenon that previous experience has a negative effect on learning

new tasks is called negative transfer [17]. Similarly, in the transfer learning

area, if the target learner is negatively affected by the transferred knowledge,

the phenomenon is also termed as negative transfer [44], [57]. Whether neg-

ative transfer will occur may depend on several factors, such as the relevance

between the source and the target domains and the learner’s capacity of

finding the transferable and beneficial part of the knowledge across domains.

Despite being obvious, this explanation obscures several important aspects

of negative transfer, including the next three points.:

• 1. Negative transfer should be defined with regard to the algorithm

used. It is important to consider what the negative impact is compared
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with. For example, it will be misleading to only compare with the best

possible algorithm only using the target data, because the increase in

risk (the expected value of specific task loss) may not come from using

the source-domain data, but the difference in algorithms.

• 2. Divergence between the joint distributions is the main cause of neg-

ative transfer. As negative transfer is algorithm specific, it is expected

to doubt the existence of a transfer learning algorithm that can always

improve the expected risk compared to its target-domain only baseline.

It turned out this depends on the divergence between distribution in

the source and the target domain [85]. Then, an ideal transfer would

figure out and take advantage of the similar part, leading to improved

performance. However, if an algorithm fails to discard the divergent

part and instead rely on it, one can expect negative transfer to happen.

• 3. Another important factor of negative transfer is the size of the

labeled target data, which can have a mixed effect. On one hand,

for the same algorithm and distribution divergence, negative transfer

condition depends on how well the algorithm can do using target data

alone. Where there is no labeled target data, only using unlabeled

target data would result in a weak random model and thus negative

transfer conditions are unlikely to be satisfied. When labeled target

data is available, a better target-only baseline can be obtained using

semi-supervised learning methods and so negative transfer is relatively

more likely to occur. At the other end of the spectrum, if there is

an abundance of labeled target data, then transferring from an even
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slightly different source domain could hurt the generalization. Thus,

this shows that negative transfer is relative.

In the recent years researchers started incorporating this tool in their research

in the fields of microscopy [86], biology, genetics etc. to benefit tasks such as

protein folding, and labeling cancer cells (add references). In this research we

present an innovative use of TL to learn about organelle - organelle spatial

dependencies. Our objective was to measure the interactions between differ-

ent organelles. We believe that the information about the structure, organi-

zation, and patterns, is stored in the networks we have trained in advance.

Thus, to create a measurable analysis, we wanted to pass this knowledge from

one network to another and study the impact it creates, our approach is un-

der the instance-based transfer learning case. The method we came up with

was applying Transfer Learning on our initial networks. We load the weights

generated by network A (that predicts organelle A) as an initialization for a

new network that we are going to train to predict organelle B. The results

of the new network MA
BF→B are compared to the results of the original net-

work MBF→B that predicts organelle B in order to determine if organelle B

is spatially dependent on organelle A (Fig. 3.14). Using the Wilcoxon signed-

rank test, we make sure that we only compare the findings that are statisti-

cally significant. We measure the positive change in correlation (significance

of our prediction). The PCIC (positive change in correlation) as follows:

PCIC = diff
1−MA

BF→B
where - diff = MA

BF→B −MA
BF→B We also measured

the negative change (NCIC) in a similar fashion: NCIC = diff
MA

BF→B
.

I would like to express two important disclaimers:
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• The performance of label free models can be enhanced with the help

of TL as shown in [34][87]. It is critical to recognize that this work

does not center on accomplishing it. By analyzing how various net-

works interact with one another, we use TL to learn about the spatial

dependencies between organelles.

• Intentionally, we utilized a really rudimentary TL method. Although

we might have used a variety of methodologies and procedures to im-

prove the performance for each structure depending on its particular

characteristics, our objective was to provide results that were simple to

compare.
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Chapter 5

Discussion and Conclusions

To provide a comprehensive methodology for predicting organelle-organelle

interactions, as well as measuring the magnitude of the impact structures

have on each others’ location. We have investigated a unique dataset of

3D microscopy imaging, investigated the limitations and weak points of the

in-silico labeling method as well as methods to enhance it, and applied an

innovative approach for using transfer learning. The main outcome of this

research is a prototype of a data-driven organelle interactome atlas with

computationally predicted organelle-organelle interactions, represented as a

directional weighted graph. In this graph one can see the impact each or-

ganelle has on its neighbors and the magnitude of this impact.

Our method is a powerful tool for giving Biologists an intuition about the

inner workings of the cell. It can be used to reveal new intricate connections

between organelles in the cell, revealing unknown components in systems and

pathways in the cells’ function. By revealing these new insights that were
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not available with currently existing tools researchers will be able to develop

new specific and impactful medical treatments such as drugs, genetic modifi-

cations and even diet alterations that can save patients lives. Following this

logic, and also based on our results with drug perturbations (Fig. 3.10 ) our

method can actualize as a tool for measuring the impact of different treat-

ments and procedures on spatial dependencies in multi organelle systems.

The fresh viewpoint on TL that this research offers is another important

outcome; in this case, we used it to discover spatial relationships rather than

to enhance learning. To access the features that the model has learned, in

other words. It is important to notice that our results represent the features

that our method was able to learn given the data that was available to us

and under the time constraints of a masters degree . Here I would like to

list some limitations, constraints and possible pitfalls our research is prone

to suffer from: variance in cell types, as well as in the imaging resolution,

leakiness of in-silico predictions, sensitivity of our method.

Areas of challenge: First I would like to address the issue of variance in cell

types, there are many different types of cells in different organs of our body.

These differences are important for our body’s healthy operation, in addition

there is also the difference of these cells among different ethnicities and cul-

tures. These differences will oftentimes be expressed in different shapes and

compositions of their organelles, but more importantly in order to execute

different functionalities the interactions between different organelles will dif-

fer, obviously leading to different outcomes in our method. Addressing this

will require extensive work of acquiring datasets of imaging of cells with dif-
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ferent characteristics and analyzing them. Staying on the topic of variance

of our data, it is also important to notice that different imaging data has

different imaging resources, variety in quality, resolution and other technical

conditions. Even in our own data set we had batch effects which we addressed

(in chapter. 4.2 ) by preprocessing and eliminating problematic days. It is

interesting to note that some organelle interactions occur at multiple spatial

scales [88]. This phenomena might be captured if data with variable range

scale will be available, then the atlas would have to have different layers to

reflect this.

Variance in the resolution of structures is another issue, some imaging reso-

lutions are able to capture bigger structures like the nucleus, but Golgi and

Desmosomes lack important structural resolution. To solve this issue much

higher resolution images would be required, the down side of this solution will

be the significant increase in computation time and resources required. We

managed this problem by measuring the impacts relatively in a manner that

takes into account the performance of the in-silico models for each structure

(Fig. 3.22(a)). Taking a step back it is also important to notice that the

method of in-silico that we rely on is also not fault proof, thus validations

on data from multiple sources is required in order to validate the results. To

complete this atlas data for more organelles is required, which is not bio-

logically yet possible to annotate ground truth images of all organelles in a

complete manner.

Negative transfer learning (NTL) is another topic that requires further inves-

tigation in this context, as the main reasons for this phenomena are explained
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it is important to further investigate the cause in our case, we have a few

suspicions that we didn’t have time to validate: First is very straight for-

ward, models that have really poor result to start with, will only confuse the

model we are trying to train, thus it will cause NTL. Structures might have

negative relations with each other, canceling each other might be reflected as

NTL. Imaging differences between the source and target datasets like high

variance in the resolution, quality, etc. might also result in NTL.

Together, the computational strategies addressed in this study demonstrate

how image-based information can be measured, incorporated, and explored

in the context of data-driven cell biology. Future research must solve the

mentioned crucial issues in order for this potential to be fully fulfilled. In the

long term, we envision a comprehensive cell atlas, which can be mined for

patterns and relationships across a wide range of experiments and modali-

ties.
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[66] Köhler, Katja and Zahraoui, Ahmed. Tight junction: a co-ordinator

of cell signalling and membrane trafficking. Biology of the Cell, 97(8):

659–665, 2005.

[67] Ugalde-Silva, Paul, Gonzalez-Lugo, Octavio, and Navarro-Garcia, Fer-

nando. Tight junction disruption induced by type 3 secretion system ef-

fectors injected by enteropathogenic and enterohemorrhagic escherichia

coli. Frontiers in cellular and infection microbiology, page 87, 2016.



77

[68] Regan-Klapisz, Elsa, Krouwer, Vincent, Langelaar-Makkinje, Miriam,

Nallan, Laxman, Gelb, Michael, Gerritsen, Hans, Verkleij, Arie J, and

Post, Jan Andries. Golgi-associated cpla2α regulates endothelial cell–

cell junction integrity by controlling the trafficking of transmembrane

junction proteins. Molecular biology of the cell, 20(19):4225–4234, 2009.

[69] Egea, Gustavo, Serra-Peinado, Carla, Gavilan, Maria P, and Rios,

Rosa Maria. Cytoskeleton and golgi-apparatus interactions: a two-way

road of function and structure. Cell Health and Cytoskeleton, 7:37, 2015.

[70] Harada, A, Takei, Y, Kanai, Y, Tanaka, Y, Nonaka, S, and Hirokawa, N.

Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic

dynein. The Journal of cell biology, 141(1):51–59, 1998.

[71] Dubitzky, Werner, Wolkenhauer, Olaf, Cho, Kwang-Hyun, and Yokota,

Hiroki. Encyclopedia of systems biology, volume 402. Springer New York,

2013.

[72] Helms, J Bernd and Rothman, James E. Inhibition by brefeldin a of a

golgi membrane enzyme that catalyses exchange of guanine nucleotide

bound to arf. Nature, 360(6402):352–354, 1992.

[73] Karaman, Mazen W, Herrgard, Sanna, Treiber, Daniel K, Gallant, Paul,

Atteridge, Corey E, Campbell, Brian T, Chan, Katrina W, Ciceri,

Pietro, Davis, Mindy I, Edeen, Philip T, et al. A quantitative anal-

ysis of kinase inhibitor selectivity. Nature biotechnology, 26(1):127–132,

2008.



78

[74] Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. Imagenet

classification with deep convolutional neural networks. Advances in neu-

ral information processing systems, 25, 2012.

[75] Zhou, Kevin, Greenspan, Hayit, and Shen, Dinggang. Deep learning for

medical image analysis. Academic Press, 2017.

[76] Litjens, Geert, Kooi, Thijs, Bejnordi, Babak Ehteshami, Setio, Ar-

naud Arindra Adiyoso, Ciompi, Francesco, Ghafoorian, Mohsen, Van

Der Laak, Jeroen Awm, Van Ginneken, Bram, and Sánchez, Clara I.

A survey on deep learning in medical image analysis. Medical image

analysis, 42:60–88, 2017.

[77] Kingma, Diederik P and Ba, Jimmy. Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980, 2014.

[78] Raina, Rajat, Battle, Alexis, Lee, Honglak, Packer, Benjamin, and Ng,

Andrew Y. Self-taught learning: transfer learning from unlabeled data.

In Proceedings of the 24th international conference on Machine learning,

pages 759–766, 2007.

[79] Dai, Wenyuan, Yang, Qiang, Xue, Gui-Rong, and Yu, Yong. Self-taught

clustering. In Proceedings of the 25th international conference on Ma-

chine learning, pages 200–207, 2008.

[80] Wang, Zheng, Song, Yangqiu, and Zhang, Changshui. Transferred di-

mensionality reduction. In Joint European conference on machine learn-

ing and knowledge discovery in databases, pages 550–565. Springer, 2008.



79

[81] Dai, Wenyuan, Xue, Gui-Rong, Yang, Qiang, and Yu, Yong. Co-

clustering based classification for out-of-domain documents. In Proceed-

ings of the 13th ACM SIGKDD international conference on Knowledge

discovery and data mining, pages 210–219, 2007.

[82] Schwaighofer, Anton, Tresp, Volker, and Yu, Kai. Learning gaussian

process kernels via hierarchical bayes. Advances in neural information

processing systems, 17, 2004.

[83] Gao, Jing, Fan, Wei, Jiang, Jing, and Han, Jiawei. Knowledge transfer

via multiple model local structure mapping. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 283–291, 2008.

[84] Mihalkova, Lilyana, Huynh, Tuyen, and Mooney, Raymond J. Map-

ping and revising markov logic networks for transfer learning. In Aaai,

volume 7, pages 608–614, 2007.

[85] Gong, Mingming, Zhang, Kun, Liu, Tongliang, Tao, Dacheng, Glymour,

Clark, and Schölkopf, Bernhard. Domain adaptation with conditional

transferable components. In International conference on machine learn-

ing, pages 2839–2848. PMLR, 2016.

[86] Jin, Yuncheng, Chen, Jiajia, Wu, Chenxue, Chen, Zhihong, Zhang,

XIngyu, Shen, Hui-liang, Gong, Wei, and Si, Ke. Wavefront reconstruc-

tion based on deep transfer learning for microscopy. Optics Express, 28

(14):20738–20747, 2020.



80

[87] Caicedo, Juan C, Cooper, Sam, Heigwer, Florian, Warchal, Scott, Qiu,

Peng, Molnar, Csaba, Vasilevich, Aliaksei S, Barry, Joseph D, Bansal,

Harmanjit Singh, Kraus, Oren, et al. Data-analysis strategies for image-

based cell profiling. Nature methods, 14(9):849–863, 2017.

[88] Glancy, Brian, Kim, Yuho, Katti, Prasanna, andWillingham, T Bradley.

The functional impact of mitochondrial structure across subcellular

scales. Frontiers in physiology, 11:541040, 2020.



עניינים תוכן

vii איורים רשימת

xiv טבלאות רשימת

1 מבוא 1

5 ספרות סקירת 2

5 . . . . . . . . . . . . . . . . . . . אורגנלה־לארגנלה אינטרקציות 2.1

8 . . . . . . . . . . . . . . . . . . . . עמוקה למידה באמצעות תיוג 2.2

10 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ידע העברת 2.3

14 ניסוייות תוצאות 3

14 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . מקדים עיבוד 3.1

19 . . . . . . . . . . עמוקה בלמידה האברונים תיוג שיטת שחזור 3.2

29 . . . . . . . . . . . . . . . . . . . . . . . . . . . . היתכנות הוכחת 3.3

35 . . . . . . . . . . . . . . . . . . . . . . . . . . . מרכזיות תוצאות 3.4

44 שיטות 4

44 . . . . . . . . . . . . . . . . . . . . . . . . . הנתונים מערך תיאור 4.1

50 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ביצועים מדדי 4.2

52 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . מודלים 4.3

54 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . למידה העברת 4.4



62 ומסקנות דיון 5

65 ביבליוגרפיה



למידה והעברת עמוקה למידה באמצעות תיוג ישום

במרחב אברון־אברון קשרי לנתח מנת על

יקטרינה סמוליאנסקי

הטבע למדעי מוסמך לתואר גמר עבודת

בנגב בן־גוריון אוניברסיטת

2022

תקציר

היא התא תפקוד את המאפשר הרכב ליצירת יחד פועלים אברונים כיצד

ידי על מעוכבת בתחום ההתקדמות התא. של בביולוגיה בסיסית שאלה

בין־אורגנלות, בזמן מרחביות אינטראקציות לנתח שיטתיים כלים היעדר

אותו בתוך אברונים מספר של בו־זמני בתיוג טכניות מגבלות בשל בעיקר

זמין מקיף נתונים ומערך חדשניות חישוביות טכניקות משלבים אנו חי. תא

ולהעלות ידועים קשרים לאמת כדי מימדית תלת תאים הדמיית של לציבור

בין־אברונים. מרחבית תלות לגבי חדשות השערות

מיקומי לחלץ מצליחות מכונה לימוד של מודרניות טכניקות כי הוכח לאחרונה

המכונה טכניקה ידי על תווית, ללא תמונות מתוך התא בתוך האברונים

מודלים שבה מכונה למידת טכניקת היא למידה העברת אינסיליקו״. ״תיוג

מודל לאימון התחלה כנקודת משמשים אחת למשימה שהוכשרו חישוביים



בהעברה למידה להצלחת האינטואיציה קשורה. אך אחרת למשימה חדש

יותר טובה התחלה בנקודמת שימוש תוך מודלים של שאימון מההבנה נובעת

משתמשים אנו בנפחם. מוגבלים האימון נתוני כאשר יתרונות לספק יכולים

מודל אם שונים. אברונים בין מרחבית תלות למדידת כאמצעי זו בתכונה

למידה העברת ידי על משופר אברון של ללוקליזציה שאומן סיליקו״ ״אין תיוג

המקודד שהמידע אומרים אנחנו אחר, אברון של ללוקליזציה שאומן ממודל

בין כזו השוואה הקודם. האברון של לחיזוי שימושי האחרון לאברון במיפוי

האברונים בין מרחבית תלות המקודד א־סימטרי קישור מגדירה מודלים שני

תלות רשת לבניית זו מתודולוגיה יישמנו הראשונים. לאברונים האחרונים

גזע בתאי אברונים 13 בין הזוגיים היחסים שילוב ידי על בין־אברון מרחבית

על הזמינים אנדוגני, באופן המסומנים בתלת־ממד, שצולמו פלוריפוטנטיים

התא. למדעי אלן מכון ידי

אברונים בין ידועים קשרים מספר מאמתות שלנו הראשוניות התוצאות

וגם הגרעין מעטפת גם לדוגמה, בניסוי. לאמתן שיש חדשות תחזיות ומציעות

הגרעינית והמעטפת הגולג׳י, מנגנון של לחיזוי תורמים תוך־פלזמית רשתית

מקושרים ההדוקים״ ו״המצתים הגולג׳י פלזמית. התוך הרשתית לחיזוי תורמת

אברון ואף הצמודים״ ״הצמתים של לניבוי תורם הפלזמה קרום דו־כיוונית.

הדסמוזומים. חיזוי את משפר לא

אינטראקציות לחיזוי ומאומתת מקיפה מתודולוגיה יספק שלנו הפרויקט אולטימיבית,

במיקרוסקופיה. שנים ארוכי טכניים מחסומים עקיפת תוך אברונים־אברונים,

יכולה אברון־אברון של חזויה אינטראקציה רשתות של עשיר משאב הקמת

־ התא של ביולוגיה של הקדוש״ ״הגביע לעבר גדולה מדרגה קפיצת לספק

משולבות. מורכבות כמערכות תאים של כוללת הבנה
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