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Abstract

How organelles act in concert to shape and enable cell function is a funda-
mental question in cell biology. Progress in the field is hindered by lack of
systematic tools to dissect spatiotemporal interorganelle interactions, mainly
due to technical limitations in simultaneous labeling of multiple organelles
within the same living cell. We combine emerging computational techniques
and a publicly available comprehensive dataset of 3D cell imaging to validate
known relations and to raise new hypotheses regarding inter-organelle spatial

dependencies.

Modern machine-learning techniques were recently shown to successfully ex-

tract the locations of organelles within the cell from label-free images, a
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technique called “in silico labeling”. Transfer learning is a machine learn-
ing technique where computational models trained for one task are used as
a starting point to train a new model to a different but related task. The
intuition for the success of transfer learning stems from the understanding
that re-training models using better initial states can provide benefits when
training data are limited in volume. We use this property as means to mea-
sure spatial dependencies between different organelles. If an in silico labeling
model trained to localize an organelle is improved by transferring a model
trained to localize a different organelle, than we say that the information
encoded in the mapping to the latter organelle is useful for the prediction
of the former organelle. Such comparison between two models defines an
asymmetric link that encodes a spatial dependency between the latter and
the former organelles. We applied this methodology to construct an inter-
organelle spatial dependencies network by integrating the pairwise relations
between 13 organelles in 3D imaged endogenously labeled human-induced

pluripotent stem cells available by the Allen Institute of Cell Science.

Our preliminary results validate several known relations between organelles
and propose new predictions that should be validated experimentally. For
example, both the nuclear envelope and the endoplasmic reticulum (ER)
contribute to the prediction of the golgi apparatus, and the nuclear envelope
contributes to the prediction of the ER. The golgi and the tight junctions are
linked bi-directionally. The plasma membrane contributes to the prediction

of adherens junctions. No organelle enhances the prediction of desmosomes.

Ultimately, our project will provide a comprehensive and validated method-



111

ology for predicting organelle-organelle interactions, bypassing long-standing
technical barriers in microscopy. The establishment of a rich resource of
predicted organelle-organelle interaction networks can provide a major leap
towards the “holy grail” of cell biology - inclusive understanding of cells as

integrated complex systems.
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Chapter 1

Introduction

“Organelle- a specialized cellular part (such as a mitochondrion, chloroplast,
or nucleus) that has a specific function and is considered analogous to an

organ”, -definition by Merriam Webster dictionary.

Organelles, meaning ‘small organ’ are the specialized subcellular structures
which allow it to perform its functions. Proper cell function requires multi-
ple organelles to act in concert involving physical and chemical interactions
between different organelles. These interactions can be reflected by specific
localization patterns and spatial dependencies between organelles [2-9]. Per-
turbed organelle-organelle interactions can lead to impaired functionality at
the cellular level and disease [10, 11]. While many studies focus on the role
and structure of individual organelles, much less is known about how differ-
ent organelles coordinate their organization and function within the cell, a
fundamental requirement for the observed integrated complex cell function

2-9].



Microscopy is the only technology that can enable determination of the or-
ganelles’ intracellular localization. However, imaging and monitoring the
dynamics of multiple organelles simultaneously in the same living cell is a
challenging task. [5], [12]. Progress in this area has been confounded by the
difficulty to achieve an integrated representation of cellular organization due
to the limited number of fluorophores that can be simultaneously tagged and

distinguished in a microscopy image [13].

To bridge these gaps [1, 14] presented that modern machine learning tech-
niques can computationally infer specific organelle localization patterns from
label-free microscopy images. The method presented a convolutional neural
networks (CNN)-based tool, employing a U-Net architecture [15] [ Methods]
to model relationships between distinct but correlated imaging modalities,
predicting corresponding fluorescence images directly from three-dimensional
(3D) transmitted-light microscopy live cell images. The label-free prediction
tool learns each relationship between 3D transmitted-light and fluorescence
live cell images for several major subcellular structures. A resultant model
can then predict a 3D fluorescence image from a new transmitted-light in-
put. A single transmitted-light input can be applied to multiple subcellular

structure models, enabling multi-channel, integrated fluorescence imaging.

Importantly, the method considers prediction of each type of organelle as
a separate task which requires its own trained model. At inference, the
network generates an image reconstructing the localization of an organelle
within the cell from a label free image. Using this method, it becomes possible

to annotate many organelle in the living cell by overlaying each network’s



prediction of the same input image. This process is non-destructive to the
cellular structure. These results were replicated in other cellular systems
and label-free microscopy techniques [1, 14]. While, in principle, “in silico
labeling” can provide an integrated view of a live cell, all of these studies
did not go beyond a proof of principle and did not provide practical tools for

direct application toward biological discovery.

In my dissertation I developed a method that uses in silico labeling to indi-
rectly dissect organelle-organelle interactions by computationally integrating
single-organelle data from multiple experiments.Since the various networks
were trained independently of one another on images with only one type of
organelle labeled, it is hard to extrapolate information regarding holistic,
multi-organelle relations from those trained models. The general concept
relied on leveraging information learned by a model trained to localize one
organelle to a second model trained to localize another organelle. When
information learned to map one organelle enhances the mapping to a dif-
ferent organelle we can hypothesize that these two organelles are spatially

dependent.

Transfer learning is a method used to transfer knowledge acquired from one
task to resolve another. By transferring the knowledge found in various but
related source domains, it is possible to increase the performance of tar-
get learners on target domains [16, 17]. Protein folding, speech recognition,
object detection, labeling cancer cells, object tracking and recommender sys-
tems, are a few examples of tasks that have benefited from transfer learning

[18-21]. In my thesis I demonstrated a proof of principle study showing that



transfer learning applied to in silico labeling can be used as a tool to dissect
organelle - organelle spatial dependencies. This technology will change the
way we look at biology and give biologists specific ideas for fresh experimental

setups to better understand how cells are structured inside.



Chapter 2

Related Work

Due to the multidisciplinary nature of my study, I have covered three main
topics: organelle-organelle interactions, in-silico labeling and transfer learn-

ing.

2.1 Organelle-Organelle interactions

The cell is divided into distinct membrane-bound organelles to enable the si-
multaneous orchestration of complex and frequently incompatible biochem-
ical processes. Organelle interactions are now understood to be essential
for a variety of cellular processes [2, 22, 23]. However, due to the finite
number of labels that fluorescence imaging techniques can detect in a single
image, the spatial and temporal organization of organelles within the cell is
still poorly understood [5, 24]. An important feature to notice when talking

about Organelle-Organelle interactions is contact sites between organelles,



contact sites have many important roles such as communication, regulation
and transport of molecules are only a few described in [5, 9, 25]. Valm Et
Al [5] presented a systems-level analysis of the organelle interactome using
a multispectral image acquisition method that overcomes the challenge of
spectral overlap in the fluorescent protein palette. Using confocal and lattice
light sheet instrumentation and an imaging informatics pipeline of five steps
to achieve mapping of organelle numbers, volumes, speeds, positions and
dynamic inter-organelle contacts in live cells. Describing the frequency and
locality of two-, three-, four- and five- way interactions among six different
membrane-bound organelles (endoplasmic reticulum, Golgi, lysosome, perox-
isome, mitochondria and lipid droplet) and showing how these relationships
change over time. The paper demonstrates that each organelle has a char-
acteristic distribution and dispersion pattern in three-dimensional space and
that there is a reproducible pattern of contacts among the six organelles that
are affected by microtubule and cell nutrient status. Another recent attempt
to elucidate the subcellular organization of multiple proteins was done by in-
tegrating and aligning localization of separately imaged mitotic proteins and
constructing a comprehensive and quantitative canonical (i.e., “average”)
4D model of mitotic protein localization network [26]. While this spatio-
temporal standardization of a dynamic cellular process holds great promise,
it reduces a complex heterogeneous process to a single plausible trajectory
that does not capture the entire variability in the diverse phenotypic land-
scape. Cho et al. [27] Constructed a library of 1310 fluorescently tagged cell
lines, and generated a large dataset that maps the cellular localization and

physical interactions of the corresponding 1310 proteins. Applying a com-



bination of unsupervised clustering and machine learning for image analysis
allowed to objectively identify proteins that share spatial or interaction signa-
tures. The data provides insights into the function of individual proteins, but
also enables to derive some general principles of human cellular organization.
In particular, it shows that proteins that bind RNA form a separate subgroup
defined by specific localization and interaction signatures. Important finding
is that the precise spatial distribution of a given protein is very strongly cor-
related with its cellular function. Viana et al. applied new methods to deter-
mine how a subset of expressed genes dictate cellular phenotypes. To address
this challenge [28] created novel methods to transform raw cellular image data
of cells and their structures into dimensionally reduced information in a form
that accommodates the vast cell-to-cell diversity and both summarizes the
raw data. They determined, in an integrated, holistic way, where, how much
and how variable the various cellular structures are. The initial objective
was to identify quantitative relationships, or rules of organization, and then
used these data to develop benchmarks for understanding and predicting cel-
lular organization in a wide variety of biological contexts. “OpenOrganelle”
is a new data portal containing electron microscopy (FIB-SEM) cell images,
their corresponding automated segmentation of 35 organelles, and the code
and models for analyzing these data[25, 29], a high-quality resource to study
inter-organelle organization in high resolution. However this approach suffers
from limited throughput, difficulties in following dynamic processes and in

testing the effects of perturbations.



2.2 In-Silico Labeling and Label-free predic-
tion

In the life sciences, microscopy is a crucial technique. Physical fluorescent la-
bels are added to particular cellular components using a variety of techniques,
including antibody labeling. However, these methods suffer from a number of
important flaws, such as consistency issues, spectrum overlap restrictions on
the number of simultaneous labels, and the need to disrupt the experiment
in order to get the measurement, such as by fixing the cells. To get around
these issues, computational machine-learning methods were developed that
can accurately predict some fluorescent labels from transmitted-light images
of biological samples that aren’t labeled. While labeling whole cells [30-32]
or even explicitly the nucleus [33, 34] is a relatively widely researched topic

, however labeling finer details in a cell is a relatively novel field of research.

Recent advancements in this field include two publications demonstrating
a label-free method for predicting (three-dimensional) fluorescence labels
of multiple organelles directly from transmitted light images by training
deep neural networks. This was possible by virtue of the recently available
dataset from numerous experiments across various labs consisting of pairs
of transmitted-light z-stack images and fluorescence images that are pixel
registered.[1, 14, 35]. The results in [1] were remarkable for larger struc-
tures with more structured characteristics, like the nucleus, mitochondria,
and actin filaments. However smoller structures including the golgi appara-

tus and desmosomes had less significant results. While [14] addressed the



prediction of the location and texture of cell nuclei, the health of a cell, and
the type of cells in a mixture, [1] concentrated on using their method on a va-
riety of different structures. The work by Christiansen et al. contained data
integrated from 3 labs, whereas ounkomol et al. had only one data source.
Christiansen et al., also experimented with transfer learning: once trained to
predict a set of labels, the network could learn new labels with a small number
of additional data, resulting in a highly generalizable algorithm, adaptable
across experiments. It has been noticed previously that when learning struc-
ture shape, using a combination of other related structures can benefit the

results [36].

In a similar manner [37] demonstrate a digital staining method they call
PhaseStain that aims to convert quantitative phase images (QPI) of label-
free tissue slices into images comparable to brightfield microscopy images of
the same samples that have been histologically stained. They used skin, kid-
ney, and liver tissue to train three deep neural network models. reporting the
GAN-based staining framework’s high-fidelity performance. Worth mention-
ing Quantitative label-free imaging with phase and polarization (QLIPP), a
new computational imaging technique for label-free determination of density
and anisotropy from 3D polarization-resolved data, has been published by the
authors. [38] demonstrate how different organelles’ density and anisotropy
can be used to identify them. They also demonstrate the capability of label-

free identification of numerous brain tissue areas.
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2.3 Transfer learning

Transfer learning (TL) is a method used to transfer knowledge acquired from
one task to resolve another[16, 17]. For instance, before learning to fly a real
airplane, pilots use a variety of simulations, such as video games, to gain
prior skills, knowledge, and experience under the assumption that knowledge
gained while learning one task can be a good starting point when learning

another task.

In the context of machine learning, By transferring the knowledge found in
various but related source domains, TL seeks to increase the performance of
target learners on target domains [16, 39-43]. This is very useful when data
in the target domain is scarce and it is not possible to train a good model
with it, so TL gives the model a head start. Sometimes TL is also used to
direct the model in a specific direction when the target task is not easily

deducible from the target data.

The idea of transfer learning was first discussed in the context of education
in the last century, it was first considered in a computational context in
1995, and went through conceptual refinement in 2005 to the manner that

we comprehend it today [44].

It is most common to categorize transfer learning under three subsettings,
inductive transfer learning, transductive transfer learning, and unsupervised
transfer learning, based on different situations between the source and target
domains and tasks [43, 44]. Approaches to transfer learning in the above

three different settings can be summarized into four cases based on “What
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to transfer”. The first context can be referred to as instance-based trans-
fer learning (or instance transfer) approach [43, 45, 46] which assumes that
certain parts of the data in the source domain can be reused for learning
in the target domain by reweighting. Instance reweighting and importance

sampling are two major techniques in this context.

Employing transfer learning with convolutional neural networks (CNNs),
well-trained on non-medical ImageNet dataset, has shown promising results
for medical image analysis in recent years. MA Morid et al. conduct a scop-
ing review to identify these studies and summarize their characteristics in

terms of the problem description, input, methodology, and outcome [47].

Other recent studies incorporate transfer learning to boost research on bio-
logical data, Wang et al. [48] presented BERMUDA (Batch Effect ReMoval
Using Deep Autoencoders), a transfer-learning-based method for batch ef-
fect correction in sScRNA-seq data. BERMUDA effectively combines different
batches of scRNA-seq data with vastly different cell population compositions
and amplifies biological signals by transferring information among batches.
BERMUDA outperformed existing methods for removing batch effects and

distinguishing cell types in multiple simulated and real scRNA-seq datasets.

Widmer, C., and Rétsch, G. [49] present two problems from sequence biology,

where multitask learning was successfully applied.

Stumpf, Patrick S., et al. [50]shows that transfer learning can be used to
efficiently map bone marrow biology between species, using data obtained

from single-cell RNA sequencing.

Sevakula, Rahul K., et al. [18] presented a transfer learning procedure for
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cancer classification, which uses feature selection and normalization tech-
niques in conjunction with s sparse auto-encoders on gene expression data.
While classifying any two tumor types, data of other tumor types were used

in an unsupervised manner to improve the feature representation.

Zheng, Shijie C., et al.[51] present tricycle, an R/Bioconductor package. By
leveraging key features of the biology of the cell cycle, the mathematical
properties of principal component analysis of periodic functions, and the use
of transfer learning. They estimate a cell-cycle embedding using a fixed refer-
ence dataset and project new data into this reference embedding, an approach
that overcomes key limitations of learning a dataset-dependent embedding.
Tricycle then predicts a cell-specific position in the cell cycle based on the

data projection.

Applying TL in microscopy imaging in order to enhance the imaging is be-
coming very effective and being used in several recent researches. To produce
high-resolution slices of biopsy images from low-resolution ones, [52] suggest
a combined architecture that combines a unique transfer learning technique

and a deep super-resolution framework.

[53] introduces a versatile reconstruction method, ML-Structured illumina-
tion microscopy (SIM), which makes use of transfer learning to obtain a
parameter-free model that allows a doubling of image resolution at speeds

compatible with live-cell imaging.

[54] applied convolutional neural networks and transfer learning can be used
to identify cancer tissue from real-time in vivo imaging with confocal laser

microscopy In another research, Transfer learning was employed in the form
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of fine-tuning.

[55] was able to effectively classify an image into four classes: normal, benign,
invasive carcinoma, and in situ carcinoma. They produced results with an

accuracy of 98.33 percent and sensitivity of 98.44 percent.

Importantly, the transferred knowledge does not always bring a positive im-
pact on new tasks. If there is little in common between domains, knowledge

transfer could be unsuccessful [17, 42, 56, 57].
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Chapter 3

Experimental Results

3.1 Pre-processing

Prior to diving into our primary outcomes, it’s critical to comprehend the
data and prepare it for further analysis. My research relied on a unique
publicly available comprehensive 3D cell imaging datasets (Full description
is available in Methods), from the Allen Institute of Cell Science [58]. The
Allen Institute genetically edited over 40 high quality-certified fluorescently
tagged human induced pluripotent stem cell lines (hiPSC) that target nine-
teen specific key cellular membrane-bound organelles and fundamental cel-
lular structured components [59, 60] and imaged them in their native condi-
tions and under several well characterized perturbations — a perfect dataset

to systematically characterize inter-organelle interactions.

The Allen institute genetically edited different cell lines, each with a different

key organelle fluorescently tagged. This dataset included images from nine-
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teen different gene edited human stem cell lines, each organelle sub-dataset
includes at least 350 3D images, each with a matching label-free (brightfield)
and a labeled (fluorescent) channel as well as two additional channels with la-

beled organelles that are common to all cells, the cell membrane and nucleus

(Fig.3.1).

(a) label-free (brightfield) (b) structure

(c) additional channel of la- (d) additional channel of la-
beled organelle nucleus. beled organelle cell membrane.

Figure 3.1: Representative middle slices of an image in our database, in this
case the structure imaged is endoplasmic reticulum. (a) In yellow is the
label-free (brightfield) channel. (b) In gray labeled structure of endoplasmic
reticulum. (c¢) In purple an additional channel of labeled organelle nucleus.
(d) In green an additional channel of labeled organelle cell membrane.

Not all organelles were centered at the same focal plane (z-axis). Under the

assumption that the most focused focal plane will result with a less blurred
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image we measured the standard deviation in pixel brightness across the
different imaged focal planes. While the majority of organelles, including
the nucleus, showed a normal distribution (Fig.3.2) of standard deviation
over the z-axis, some organelles showed non-normal distributions (Fig. 3.3)
because certain organelles are not located at the cell’s center (e.g., tight
junctions are located near the cell’s periphery). It became clear that top and
bottom image slices do not contain information regarding the organelles of
interest and thus they were discarded, leaving 40 z-slices around the cell’s

center (determined as the center z-slice of the nucleus) spanning 11.6 pum.

std of the NucleolusDFC structure's z slices

1.0 channel
0.8 —— membrane
—— struct
;-] 0.6 —— dna
" o4 BF
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0 20 40 60
- index of slice

Figure 3.2: Standard deviation of pixel brightness per slice in z-axis for all
channels in images of the Nucleus DFC organelle showing the mid slice of
each channel correspondingly.
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Figure 3.3: Standard deviation of pixel intensities (y-axis) per slice in the
z-axis (x-axis in figure, “index of layer”) of bright-field (BF), nucleus (dna),
membrane, and an additional organelle (struct).
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Our data suffered from day-today-variability or batch effects that can be
caused by technical issues in the sample itself like difference in temperature,
light exposure or slight variance in the growth medium. Other reasons might
be, different imaging conditions or skills, as indicated by imaging days where
in-silico labeling performance deteriorated compared to other days (Fig. 3.4)

(chapter 4 Methods).

Batch Effect skewed results for Nuclear Envelope

Brightfield Prediction
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Figure 3.4: A comparison of mid slices of different images for the same struc-
ture, we can see that although the target image is looking very clear on both
images the network performs differently, due to batch effects.

We analyzed datasets from different days as described at length in (chapter
4) and ended up with the dates listed below to be excluded from the full

data-set (chapter 4 Methods, table 4.1).
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| Structure | Dates
Nuclear Envelope 08/05/2017, 09/05/2017, 12/05/2017
Endoplasmic-reticulum 28/07/2017
Actin-filaments 28/08/2017
Actomyosin-bundles | 10/10/201,7 22/09/2017, 25/09/2017,26/09,/2017
Tight-junctions 16/10/2017, 26/09/2017
Gap-junctions 06/03/2018 09/03/2018
Plasma-membrane 19/03/2018
Adherens-junctions 25/05/2018
Mitochondria 13/06/2017 , 09/06/2017
Desmosomes 19/07/2017 18/07/2017
Golgi 05/09/2017 , 25/08/2017, 29/08/2017
Centrosome 22/12/2017
Endosomes 12/10/2018

Table 3.1: Excluded days

Another criterion for exclusion was faulty images that were manually identi-

fied and discarded (Fig. 3.5).

AL

Figure 3.5: A corrupted image that was manually identified and excluded
from our data set.
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3.2 Reproducing Label Free and gaining a

deeper insight into this method

"For the things we have to learn before we can do them, we learn by doing
them.” -Aristotle. It is crucial to understand the tools we are about to apply
in this project. Therefore we reproduced Allen institute’s results by training
models to predict organelles location from Bright Field (BF) images using
the Allen institute fluorescently tagged images [1]. As presented in (Fig. 3.6)
The models performance is very similar, slight variations may be seen due to
variations in images used to train and test the models. Since the paper [1]
was released more structures have been imaged and so we trained models for
these structures (Fig. 3.7(a)). Examples of such predictions are presented in

(Fig. 3.8(b)).
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Recreation of prdictions across limited subcellular structurs
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(a) Our reproduction of (b) The corresponding results
the Label-free method. that were published in [1].

Figure 3.6: Distributions of the image-wise Pearson correlation coefficient (r)
between ground-truth (target) and predicted test images derived from the
indicated subcellular structure models. Each target/predicted image pair in
the test set is a point in the resultant r distribution; the 25th, 50th, and 75th
percentile image pairs are spanned by the box for each indicated structure,
with whiskers indicating the last data points within 1.5x the interquartile
range of the lower and upper quartiles. The number of images in the test set
was 10 for all distributions. (a)Our reproduction of the Label-free method.
(b) The corresponding results that were published in [1].
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of prdictions across different structurs (batch effect
0.91 0.87 0.9 0.68 0.73 0.73 0.65 0.74 0.59 0.42 0.57 0.36 0.25 0.61 0.1 0.06 0.07 0.06 0.05
1.0

= o =

e
b3

Pearson correlation
e
b3

- HE

& v 5 W 7. Desmosomes

(a) Full asessment (b) Representative labeled structure
models and model predictions for
3D transmitted-light microscopy.

Figure 3.7: Extension of our reproduction of Label-free. (a) Data for the
recreation was constructed with batch effects consideration, excluding images
from problematic imaging days. (b) Representative labeled structure models
and model predictions for 3D transmitted-light microscopy.

We trained models without considering batch effects to better comprehend
the data as well as the constraints of the label free approach. The predictions
of these models showed lower correlations in label free predictions. This
analysis yielded a decline of 5.7 percent on average in accuracy (Fig. 3.8(a)).
When comparing (Fig. 3.7(a)) and (Fig. 3.7(a)) the most notable impact
was seen in organelles that are in the middle of the accuracy range, such as
Tight Junction and Lysosome, while organelles at the extremes of the range,
such as Desmosomes and Endosomes, on the low range, and Nucleus and

Actin Filaments on the high range, showed little to no change.
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(a) Partial results as ex- (b) The corresponding results to
plained in section C. (a) that were published in [1].

Figure 3.8: (a) Reproduction of Label Free without consideration of batch
effects: the training dataset includes images from batch effect prone imaging
days. (b) Representation of the variation in the models’ performance with
regard to the batch effect. The performance of the model that takes batch
effects into consideration is significantly improved.

Not only the batch effect has an impact on this method but also it seems
that there is a pattern where different groups of organelles are performing
differently. Interestingly,the term of “stereotypy” -The extent to which a
structure’s individual location varied; was actually a side result of a larger
research [28]. The aim was to develop generalizable, quantitative methods
that permit direct comparison of the similarity of overall cell and nuclear
shapes for 3D cell image data and achieve a simple and human-interpretable
“shape space”. They developed A cell and nuclear shape-based coordinate
system using a Principal Component Analysis (PCA)-based dimensional re-
duction approach. By Aligning all cells to their centroids. By morphing the
parameterized intensity representation of each cell into the idealized cell and
nuclear shape representing a nearby map point location in the shape space,

they created a ‘morphed cell’.

To measure how variable the location of each individual structure is within



23

the cell, required to calculate the 3D voxel-wise Pearson correlation between
pairs of individual morphed cell images for each of the 25 cellular structures
(Fig. 3.9(a)). Averaging those correlation values to generate a measure of the
“location stereotypy” of each structure. Structures with a high stereotypy
value have little cell-to-cell variation in their overall absolute positions for
similarly shaped cells. Structures with a low stereotypy value may be found

in distinct locations even for two cells whose shapes are very similar.

In (Fig. 3.9(b)) the correlation between organelle stereotypy and the per-
formance of the model predicting this organelle is clear. The explanation is
simple, if an organelle tends to appear in a fixed location it will be much
easier to locate it then an organelle that may appear anywhere without any
constraints. According to this reasoning, we expect that models that predict
the more stereotypic organelles probably are able to do so by exploring and
locating the immediate surroundings and neighbors of the structure, whereas
for the less stereotypic structures, the model would probably have hard time

finding such clues.

While batch effects are a general problem that affected the entire dataset,
it is clear from the in-silico method that organelles that are more stereo-
typical, like plasma membrane and micro tubules, are less affected by this
phenomenon and are maintaining high performance even when under the in-
fluence of batch effects, which is not the case for an organelle like a lysosome

and tight junction.
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(b) Each organelles’ in silico results are matched
with the stereotypicality score it achieved. Show-
ing high correlation between high performing
models and stereotypicality of organelles location.

(a) Box plots correspond
to the values of the
correlation for each of
the 25 cellular structures.
Figure adapted from [28]

Figure 3.9: Correlation between the location stereotypy and Pearson score
for the in silico labeling results.

Further researching the models ability to exploit the structures’ immediate
environment led us to explore the impact perturbation have on the map-
ping between bright-field to the fluorescent label of that structure: We were
interested in how the model’s performance represented the effect that the
drug has on the organelles’ structural composition. To address this we have
assessed the effects of various alterations on an organelle’s structure and eval-
uated the effects of those changes on the prediction. Our hypothesis is that
after the cells are perturbed the mapping between bright-field to fluorescent
of that structure is also altered, making the models predictions inaccurate.
The Allen Institute created a small data-set of various structures that were
exposed to six different drugs using the Allen Cell Collection. Since Tight

Junction was the only structure where we could visually see the impact of
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the drugs (as explained in Methods), we only tested three drug types that
had visually distinct (Fig. 3.10(b)) structural effects on the structure. Un-
derstanding the drugs’ mechanisms was crucial for understanding the results,

The drugs are listed by the magnitude of the effect from minor to major:

e Brefeldin A- expected to see very little change if any.
e Blebbistatin- expected to see a decrease in correlation.

e Staurosporine- e expected to see a great decrease.

The results (Fig. 3.10) reflect that in-silico labeling performed worse after
structure changing drug exposure, reinforcing our hypotheses the mapping
from bright-field to the fluorescent target (TJ) has changed. This could be
caused by direct change in TJ or because of changes in the surroundings and

other organelles that the model is using to determine the TJ.
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Drug perturbation effects on Label free predictions of Tight Junction
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(a) Distributions of the image-wise Pearson correlation coefficient (r) between
ground-truth (target) and predicted test images derived from the Tight junction
subcellular structure model for data sets that were introduced to three different
drugs compared with the control baseline (original); Blebbistatin, Berfeldin,
and Staurosporine (Methods). Each target/predicted image pair in the test
set is a point in the resultant r distribution; The number of images in the test
set was 10, 14, 25, 5 correspondingly, and according to data availability. (All
predictions were calculated using the original model only changing the test set).
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(b) Examples of structure from control and perturbed samples. Top

images are the ground truth, bottom are the predictions. From
left to right: control, Blebbistatin, Brefeldin, and Staurosporine.

Figure 3.10: Evaluation of drug perturbation impact on predictions.

We had to challenge our growing intuition regarding the mapping between
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bright-field to the fluorescent label heaving to do great deal with spatial de-
pendencies, and look into individual morphological properties of the different
structures. Erosion is one of the fundamental operations in morphological
image processing. We define sturdy structures structures that are more re-
sistant to erosion are . We wanted to measure the correlation between the
steadiness of a structure and its performance in in-silico labeling. We were

not able to measure significant correlation (Fig. 3.11).
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(a) Effects of erosion on morpholog-
ically different structures, tested on
three distinct organelles: Nucleus,

Tight Junction, and Mitochondria.
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Effects of erosions on all different structures
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(b) Effects of erosion on all different
structures. In each iteration
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Over the period of ten iterations.
On the left is a representing image
of the organelle. On the right is
the representation of the fading
pixels. In each iteration measured
the percent of pixels left with
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at the previous step. Nuclear
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and Microtubules are the most
sturdy structures in this order.

Recreation of prdictions across different subcellular structurs (batch effect considered)
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(c) Sturdiness, or resistance to erosion (orange dots) is plot-
ted in context of the organelle’s in-silico labeling performance.
The sturdiness here is the results after one iteration of erosion.

Figure 3.11: Exploration of individual morphological properties of the differ-
ent structures.
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3.3 POC- Validating our approach on a well-
known biological system composed of a

small subset of structures

With the growing conviction that the mapping between bright-field to the
fluorescent label of the structure has to do a great deal with spatial depen-
dencies with its neighbors. We started thinking about how to measure it, and
even pinpoint these neighbors. To make this POC more focused we chose a
simple subset of three organelles that we know have a very significant role in
cells’” function and are spatially dependent. Based on the Central dogma of
molecular biology, Nuclear envelope, Endoplasmic Reticulum (ER) and the
Golgi apparatus, are the main players in cell protein production. The DNA
contains the instructions for all proteins synthesized in the cell, contained in
the nucleus bound by the nuclear envelope. Proteins created in the cell begin
by being copied from the DNA, it is translated into a protein and folded in
the ER [61], finally in the Golgi apparatus it is modified to its functional

structure and packaged for transporting to its target destination [62].

In order to assert the best practices for our work, we executed a few supple-
menting analysis regarding our approach to Label-free. It was evident from
the images that the third dimension contains some redundant slices that lack
labeled information on the extremities. In the reprocessing, we experimented
with only keeping the slices with the structure and reduced the image to fit
into 40 z slices (Fig. 3.12). It’s interesting to note that smaller structures

did perform better in this format, while larger ones didn’t or even showed
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decline. We hypothesize that the reason being the reduction of the reference
area of the cell’s perimeter for organelles that are large and dispersed across
most of the cell’s content. Our hypothesis is that this area is important for
the model to predict the location of such structures. Over all the changes
weren’t of great significance thus we decided to continue working with whole
Z-axis range.

Label free on centered images is beneficial for smaller organelles
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Figure 3.12: Assessment of image centering impact. Distributions of the
image-wise Pearson correlation coefficient (r) between ground-truth (target)
and predicted test images derived from the indicated sub-cellular structure
models for the same data set in two variations; Whole image, 70 z-axis slices,
and a cropped version with 40 z-axis slices containing the whole structure
(indicated by _center). Each target/predicted image pair in the test set is
a point in the resultant r distribution; The number of images in the test
set was 10 for all distributions. Data for the recreation was constructed with
batch effects consideration, excluding images from problematic imaging days.
Comparing three distinct structures: Nuclear envelope (NucEnv), Endoplas-
mic reticulum (ER), and Golgi apparatus (Golgi).

Considering the training set size, we found that training models on 30 photos
was sufficient and more training images did not improve our models (Fig.

3.13), in concurrence with [1].
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Training with various numbers of i has little to no effect.
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Figure 3.13: Evaluation of data volume’s effects on training. Distributions
of the image-wise Pearson correlation coefficient (r) between ground-truth
(target) and predicted test images derived from the indicated sub-cellular
structure models for the same data set in five variations; Baseline in 30 im-
ages, 50, 100, 150, and 200. Each target/predicted image pair in the test set
is a point in the resultant r distribution; The number of images in the test
set was 100 for all distributions. Comparing three distinct structures: Nu-
clear envelope (NucEnv), Endoplasmic reticulum (ER), and Golgi apparatus

(Golgi).

Despite the fact that there are undoubtedly still many more questions about
the methods we employ, we had to continue and reach the objective of our
research. In order to bootstrap the in-silico method to our advantage the
question we had to answer was: how much information that is learned by
one model about an organelle contributes to the prediction of another? To
answer this question we applied Transfer Learning; first, we trained a model
to predict organelle A, then we trained a second model to predict organelle
B initiating it with the weights of the first model (Fig. 3.14). If the second
model is superior to a model trained directly to predict organelle B, then
we can suggest that the spatial information of organelle A contributes to the

prediction of organelle B, and that B is spatially-dependent on A (Methods).
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(a) Top row represents the process of
a label free model, trained predicting
the fluorescent labeling of organelle A
from a bright field unlabeled image,
resulting in a model we annotate as
follows: Mpr_.g. The bottom raw
represents the process in which the
weights of Mpg_.pg are loaded into
a new model yet to be trained, which
then is trained in a similar fashion
to predict a different organelle B,
in this instance the model has some
previously learned insights which are
applied in this new task, we annotate
the resulting model as: MgF—>B'
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if (Mp_p > Mpp_p)

'
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(b) Analyzing the average
person correlation of prediction
of structure B with transfer
learning from structure A
and without, if the model
with transfer learning showed
significant improvement we
conclude that the location
of B is depending on the
location of A, notice this
dependency is not isomorphic.

Figure 3.14: Schematic of our approach for exploring and quantifying the
spatial dependencies between organelles.

Using this architecture and applying it on the subset we chose, we trained
models representing all the combinations of pairs of organelles, keeping in
mind that the relations are not isomorphic. We expected to see that Nuclear
Envelope would influence both Golgi and ER, ER would influence Golgi, and
Golgi wont influence the other organelles based on the biological mechanisms
mentioned above. The results confirmed our assumptions as shown in (Fig.

3.15). We measured the the percent of improvement in relation to the base
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model.
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(a) Analysis of the results of our POC
represented as a heat map, x-axis
represents the structure on which
we trained our models, y-axis is the
structure of which weights were used to
transfer. The map shows the percent
of improvement each model achieved.
The measurement of improvement:
positive change in correlation (PCIC)
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(b) A weighted directed
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arrows represent the direction
of influence, for example
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The color represents the
magnitude of the impact.

Figure 3.15: The interplay between the nuclear envelope, endoplasmic retic-

ulum (ER), and Golgi.

To validate our results we tested our networks with other images. We have

chosen 100 images in a random manner. We predicted the location of the

organelles with the basic models and compared the results with predictions

of the same 100 images on our TL models(Fig. 3.16). We see that the same

trends are consistent with the previous results. This time we also present

negative influence that we observed (Explained in Methods).
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Significantly influenced networks
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Figure 3.16: Analysis of the statistically significant results of our POC rep-
resented as a heat map was used to construct Fig. 24, x-axis represents the
structure on which we trained our models, y-axis is the structure of which
weights were used to transfer. The map shows the percent of improvement
and negative effects each model achieved. This time each model was tested
on a set of 100 images (negative TL is explained in Methods).

After validating our hypothesis with this small sub-set of structures, and
before moving to a bigger scale of experiments it was important to examine
the statistical significance of this changes. Using the Wilcoxon signed-rank
test for each sample we evaluated the significance of the change by calculat-
ing the p value and considered significant only results that had p-score less
than 0.05. At This point we wanted to incorporate more structures to our
experiments, we extended our sub set to 12 structures, measuring the effects
on the main three we did so far (Fig. 3.17). This analysis shows that the
majority of the changes are significant. Another intriguing finding from this
analysis was the observation that the prediction of nuclear envelopes is not
improved by this approach; this is because the nuclear envelope is a very
large and stereotypical structure with excellent results right away. Remem-
bering the findings from Fig. 3.12, where we came to the conclusion that the

information in the peripheral areas of the cell are necessary for this model,
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these results make sense. It may be the case that the additional information

only serves to distract the model from the structure.
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Figure 3.17: Analysis of significance of our results. Each figure shows the
comparison of the performance of the control model (x-axis) with models
that were pre trained (y-axis) on organelles as indicated in the legend, color
coded, the significance of the results is also indicated in the legend with the
p value.

3.4 Main results

After the promising first results we were eager to see what other connections
we are capable of finding. We increased the amount of organelles until we had
a manageable yet versatile collection. We chose 14 organelles with distinct

features and trained all the combinations of target and source TL models.
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Dependencies learned by our method
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Figure 3.18: Analysis of the results represented as a heat map, x-axis repre-
sents the structure on which we trained our models, y-axis is the structure
of which weights were used to transfer. The map shows the percent of im-
provement and decline each model achieved.

Looking at the results (Fig.3.18), we can see that there are mostly negative
relations, which is a known phenomenon in TL, negative TL (as discussed
in methods). It is usually explained as occurring when the divergence be-
tween the joint distributions of target and source data sets is very significant.
Our hypothesis is that either this indicates organelles that are not spatially
strongly correlated or the structural characteristics are so distinct that the
model is not capable of making the transition. It is also possible that the
source structure is not in correlation with the main areas the target structure
is using and thus distracts it from his optimal solution. In (Fig. 3.19) is a di-
rectional and weighted graph of normalized relations between the organelles,

it is a simplified and intuitive representation of organelle-organelle spatial
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dependencies. Such that nodes are representing the organelles and the ver-
tices are weighted( represented with colour) and have directions showing who
is the source or target. There were a few organelles that did not contribute
significant positive connection, thus they are not participating in the graph.
Now we have an explicit representation of the connections that were learned
via our method. Looking into some biological possible rationalizations we

found the following phenomena, explained here in a very simplified manner.

e Actin filaments — Tight Junction, is highlighted in the following pa-
pers, structural formation of actin is necessary for the functional for-

mation of tight junction [63] [64] [65] [66] [67].

e Adherens Junction < Golgi <+ Tight Junction, Golgi-associated en-
zyme regulates the transport of transmembrane junction proteins through
or from the Golgi, thereby controlling the integrity of endothelial cell-cell
junctions [68] [67].

e ER — Golgi, “Newly synthesized proteins are transported from the en-
doplasmic reticulum via the Golgi to the trans-Golgi network.”,” Golgi
stack is associated with a single endoplasmic reticulum (ER) exit site,

forming a secretory unit.” [66] [69]
e Nuc — Golgi, [69]

e Golgi— lysosome, Fragmentation of golgi changes the location of lyso-

some [70].
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Figure 3.19: Organelle-Organelle interaction network. A weighted directed
graph, representing the spatial interactions. The arrows represent the direc-
tion of influence, for example the location of Golgi is influenced by Nuclear
envelope. The color represents the magnitude of the impact.

Reticulum
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One of the intersting results we have come across was the Tight Junction
and Golgi bidirectional spatial dependencies (Fig. 3.20), its a unique result
because the relation between these two organelles is almost symmetric. We
found evidence [67], [68], [66] that these relations are known and researched.

Positively influenced networks

= -0.10
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oo Golgi o
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TL weights reference

2 Gollgi ﬂ

8 Trained NMetworks v

(a) Analysis of the results represented (b) Directed weighted graph

as a heat map, x-axis represents the representing the influence

structure on which we trained our of TL on the performance

models, y-axis is the structure of which of each structure Golgi on
weights were used to transfer. The map the left, and tight junction
shows the percent of improvement each (TJ) on the right. The weight
model achieved compared with a model is represented with color

without the use of transfer learning. gradients matching the map.

Figure 3.20: Tight junction and Golgi demonstrated bidirectional almost
symmetric influence on one another.

Each image in our data set also contains two extra channels, representing the
cell membrane and the nucleus, as was previously mentioned. Exploiting this
underpinning new data collection provided a fantastic chance to advance our
investigation. It was put to use in two separate ways. One extended our data
set by using these additional channels as ”stand alone” data and applying
them to train models of new organelles. Practically, we only required two

models to be trained—one for each organelle—but comparing these mod-
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els was interesting. We can observe from the results that the models were
highly variable (Fig. 3.22), most likely because we neglected to examine the

performance of these organelles when looking for batch effects.
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Figure 3.21: Representative evaluation of the in-silico labeling for the addi-
tional channels each image contains. Distributions of the image-wise Pearson
correlation coefficient (r) between ground-truth (target) and predicted test
images derived from the indicated sub-cellular structure models from data
sets of five organelles; Actomyosin bundles, Desmosomes, Golgi, Mitochon-
dria and Nuclear DFC. Each target/predicted image pair in the test set is a
point in the resultant r distribution.

Due to this, we selected the best model, which, interestingly, came from the
mitochondria data set for both structures. And evaluated to see what impact

these structures had on the rest of our data.
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Figure 3.22: Analysis of the results represented as a heat map, y-axis repre-
sents the structure on which we trained our models, x-axis is the structure
of which weights were used to transfer(opposite from previous). The map
shows the percent of improvement and decline each model achieved. in each
map on the left are models that were pre-trained previously on the same BF
images, on the right is the best performing model that was pre-trained on
the mitochondria data set.

It was interesting to observe that the networks that were trained on the same
BF images twice essentially, but with two different tasks resulted in a more
significant decrease in performance. Also it was interesting to see that the
Adherence junction benefited in both cases, while the Golgi only benefited

from the Nucleus.

We see that additional channels are beneficial especially in similar organelles,
for instance the nucleus improved results for the different nucleus structures

while cell membrane improved the results of Plasma membrane.

Another method involved using additional real channels as an input for the
model, resulting in two input channels, BF and additional organelle. Each

time using a different channel.
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(a) Schematic of the second (b) Analysis of the results represented
approach. Left column represents as a heat map, y-axis represents the
the process of feeding a model with structure on which we trained our models,
two input channels, bright field x-axis is the structure that was fed to the
unlabeled image and fluorescent network as an additional channel. The
labeling of organelle B. The right map shows the percent of improvement
column represents the output and decline each model achieved. The
predicting the fluorescent labeling left column was presented with two BF

of organelle A. We annotate the channels, the middle with the additional
resulting model as: Mpripa. Nucleus and the right with the membrane.

Figure 3.23: Evaluation of introduction of two channels as an input for the
model.

We see that additional channels are majorly beneficial especially in similar
organelles, for instance the nucleus most significantly enhance results for
the different nucleus structures while cell membrane impacts the results of
Plasma membrane, Adherence junction and Tight junction the most. Its
also interesting to see that even when we add another BF' channel, meaning
no new information was added this method managed to improve in-silico

labelling.

When comparing the two methods, it becomes clear that they are very dif-
ferent from one another. The TL method works by utilizing spatial relations

between organelles as evidenced by the improved performance on spatially-
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related organelles. On the other hand, we suspect that the additional channel
method improves performance globally by providing the model with visual
“hints” for each sample. That is, it provides the model with additional signal

from the specific cells being predicted.
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Chapter 4

Methods

4.1 Dataset description

Dataset description

Our data is Three-dimensional live cell microscopy. The 3D light microscopy
data used to train and test the models consists of z-stacks of colonies of
human embryonic kidney cells available at (see http:// www.allencell.org).
Genome-edited (hiPSC) lines expressing a protein endogenously tagged with
fluorescent protein (mMEGFP) or red fluorescent protein (mTagRFP) that
localizes to a particular subcellular structure. The EGFP-tagged proteins
and their corresponding structures are:  -tubulin (microtubules), -actin
(actin filaments), desmoplakin (desmosomes), lamin B1 (nuclear envelope),
fibrillarin (nucleoli), myosin IIB (actomyosin bundles), sec61B (endoplasmic
reticulum), STGAL1 (Golgi apparatus), Tom20 (mitochondria), and ZO1

(tight junctions). The cell membrane was labeled by expression of mTagRFP.
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All cell types were imaged for up to 2.5 h on a Zeiss spinning disk microscope
with ZEN Blue 2.3 software and with a 100x /1.25-NA (numerical aperture)
objective (Zeiss C-Apochromat x 100/1.25 W Corr), with up to four 16-bit
data channels per image: transmitted light (either bright-field or DIC), cell
membrane labeled with CellMask, DNA labeled with Hoechst, and EGFP-
tagged cellular structure. Z-slice images were captured at a YX resolution of
624 x 924 px? with a pixel size of 0.108 um px !, and 63x-objective z-slice
images were captured at a YX resolution of 1,248x1,848 px? with a pixel
scale of 0.086 pum pxt. All z-stacks were composed of 50-75 z-slices with an
inter-z-slice interval of 0.29 pm. Each Image contained 10-30 cells.

The data used to train and evaluate the models (Methods) based on 3D live-
cell z-stacks, including train-test data splits. All multi-channel z-stacks were
obtained from a database of images produced by the Allen Institute for Cell

Science’s microscopy pipeline (see http:// www.allencell.org).

Table 4.1: Data Dictionary: Listing for each of the 19 different structures
available, the name of the protein that was used for in-silico labeling, the
name of the structure, the amount of images available, and the imaging

dates. The total number of available images is 11023.

Protein Structure #0Of Imaging Dates
Names Images
Actin  fila- | 844 20180320, 20180323 ,20180326, 20180327,
Alpha- ments 20180330, 20180402, 20180403, 20180316,
actinin-1, 20170919, 20170818, 20170828, 20170822
Beta-actin

Continued on next page
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Table 4.1 — Continued from previous page

Protein Structure # Of | Imaging Dates
Names Images
Non-muscle | Actomyosin | 426 20170925, 20171023, 20171010, 20170926,
myosin heavy | bundles 20170922, 20171017, 20171020
chain I1B
Beta-catenin | Adherens 590 20180515, 20180521, 20180514, 20180522,
junctions 20180525
Centrin-2 Centrosome | 492 20171222, 20171219, 20180119, 20180122,
20171212, 20180123, 20171208, 20180112
Desmoplakin | Desmosomes | 712 20170725, 20170718, 20170717, 20170726,
20170722, 20170808, 20170807, 20170724,
20170814, 20170728, 20170719, 20170721
Sec61 beta Endoplasmic | 347 20170811, 20170818, 20170807, 20170815,
reticulum 20170728, 20170821, 20170804
Ras-related | Endosomes | 374 20181001, 20181005, 20181009, 20181012
protein
Rab-5A
Connexin-43 | Gap  junc- | 461 20180306, 20180309, 20180319, 20180320,
tions 20180312, 20180313, 20180316
Sialyltransferase Golgi 449 20170829, 20170918, 20170901, 20170912,

1

20170905, 20170825, 20170915

Continued on next page
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Table 4.1 — Continued from previous page

Protein Structure # Of | Imaging Dates
Names Images
LAMP-1 Lysosome 603 20171023, 20171106, 20171110, 20171113,
20171103, 20171030
Paxillin Matrix 435 20180409, 20180416, 20180417
adhesions
Alpha-tubulin | Microtubules | 570 20170317, 20170331, 20170307, 20170310,
20170328, 20170306, 20170321, 20170227,
20170327, 20170301, 20170324, 20170320,
20170314, 20170303
Tom20 Mitochondria| 1078 20170614, 20170626, 20170628, 20170612,
20170627, 20170623, 20170613, 20170712,
20170620, 20170609, 20170705, 20170619,
20170621, 20170616, 20170630
Lamin B1 Nuclear en- | 1017 20170519, 20170607, 20170530, 20170522,
velope 20170523, 20170526, 20170606, 20170509,
20170515, 20170512, 20170531, 20170524,
20170508
Fibrillarin Nucleolus 608 20171027, 20171103, 20171031, 20171114,
(DFC) 20171117, 20171120, 20171110, 20171020
Nucleophosmin| Nucleolus 811 20180430, 20180501, 20180504, 20180507,
(GC) 20180508, 20180511

Continued on next page
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Table 4.1 — Continued from previous page

Protein Structure # Of | Imaging Dates
Names Images
Peroxisomal | Peroxisomes | 372 20180928, 20181002, 20181008, 20181029,
membrane 20181030, 20181016, 20181116
protein
PMP34
CAAX Plasma 498 20180312, 20180313, 20180316, 20180319,
domain of membrane 20180323, 20180326, 20180327
K-Ras
Tight Tight junc- | 336 20171002, 20171016, 20171024, 20171009,
junction ZO-1 | tions 20170926
TOTAL 11023

The Allen institute generated a small data-set in order to identify signature
profiles of cellular organization for a range of well-characterized agonists and
antagonists commonly used to perturb! specific cellular processes or path-

ways.

To do this, they used the cells from the Allen Cell Collection (7 different
structures) introducing them to 6 different drugs. Since Tight Junction (TJ)
was the only structure where we could visually see the impact of the drugs,

we mainly tested three different drug types on it.

L“Perturbation is an alteration of the function of a biological system by external or
internal means such as environmental stimuli, drug inhibition, and gene knockdown” [71].
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e Blebbistatin- (S)-nitro blebbistatin (SNB), inhibits the non-muscle myosin
IT ATPase. (S)-nitro blebbistatin also produced a reorganization of the
tight-junction protein ZO-1, with fragmentation of the cortical ring
near the apical surface and redistribution throughout the entire vol-

ume of the cell.

e Brefeldin A- Inhibits protein transport from the endoplasmic reticu-
lum to the golgi complex indirectly by preventing association of COP-I
coat to the Golgi membrane [72]. Tt fragmented the Golgi apparatus,
(which we know is connected to the TJ functionality) into multiple
foci dispersed throughout the cell volume within 30 min of treatment.
This fragmentation is similar to that normally observed during mitosis.

None of the other structures studied showed major changes.

e Staurosporine- The main biological activity of staurosporine is the inhi-
bition of protein kinases through the prevention of ATP binding to the
kinase. This is achieved through the stronger affinity of staurosporine
to the ATP-binding site on the kinase. Staurosporine is a prototypical
ATP-competitive kinase inhibitor in that it binds to many kinases with
high affinity, though with little selectivity [73]. Staurosporine induced
re-localization of ZO-1 from a tightly localized band near the apical

surface to a broader distribution throughout the cell surface.

To identify the center of each image we measured the standard deviation of

pixel intensities across the z-planes. s = \/ T SV (x; — T)?

High SD in a specific z-slice implies high variation in pixel intensities that
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can be interpreted as the presence of an organelle. The slice with the highest
standard deviation in the nuclear channel was correlated with the center of
the cell and this observation was used to localize the cell’s center. Using
the same approach we identified that all other organelles were located within
a radius of 5.8 um, thus we kept the 40 slices around the cell’s center and

excluded the rest ( 30% of data).

4.2 Day-to-day variability (batch effects)

Analysis of batch effects which is the issue of day to day variability was
necessary. The data was collected over a period of many months. Different
days of imaging cause high variation in the conditions, such as lighting, ad-
justment of the equipment and of course the quality of the fluorescent labels
and the behavior of the cells on the plate as well as many others. To make
sure the results are not affected by these factors we made an analysis of the
different imaging days with the purpose of pinpointing problematic days that
may have an impact on the performance of the models that is due to poor
imaging data. We excluded days with measurable batch effects defined as
follows, our dataset includes 4 days per organelle for each organelle and each
day we partitioned the data to train set of 30 images and test set of 10 images

in two ways, defining two corresponding models:

e M1 - Train set from three days, test set from the remaining day. This
ensures that there is no data-contamination in terms of the daily batch

effects.
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e M2 - Train set from all days, the model enjoys information regarding

the day at test.

We evaluate M1(I) versus M2(I) where I is an image from the day of the test.
Days with non-parametric Wilcoxon rank-sign test p-value j 0.05 (where M2
surpasses M1) were excluded because the information about the day was
helpful during training, and it implies that this day was distinct from the

others.

-ga

Blind to day information

gy

With day Ieékage

Figure 4.1: Assessment of batch effects. Each panel shows batch effects for
a different organelle. Each color represents a different imaging day, and each
data point represents an image. X-axis is the cross correlation coefficient
when the training set includes images from the same imaging day (not the
images at test, but with data leakage). Y-axis is the matched cross correlation
coefficient when the training set was blind to the imaging day at test (no
contamination). Batch effects were characterized by data points below the
reference Y = X line. A subset of days suffering from batch effects, days that
were affected by batch effects (e.g., orange markers at the most bottom-right
panel) were excluded from further analysis.
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4.3 Models

Model architecture description and training: Due to its proven effectiveness
in image segmentation and tracking tasks, we used a Convolutional Neural
Network (CNN) based on the U-Net architecture (Fig. 4.2). In general,
because they are image-translation invariant, learn complex nonlinear rela-
tionships across multiple spatial areas, do not require the development of
data-specific feature extraction pipelines, and are simple to implement and
train, CNNs are especially effective for tasks involving images (such as clas-

sification, segmentation, and image-to-image regression).

CNNs have been shown to outperform other state-of-the-art models in ba-
sic image recognition [74] and have been used in biomedical imaging for a
wide range of tasks including image classification, object segmentation [75]
and estimation of image transformations [76]. This U-Net variant consists
of layers that perform one of three convolution types, followed by a batch
normalization and rectified linear unit (ReLU) operation. The convolutions
are either 3-pixel convolutions with a stride of 1 pixel on zero-padded input
(such that the input and output of that layer are the same spatial area),
2-pixel convolutions with a stride of 2 pixels (to halve the spatial area of
the output), or 2-pixel transposed convolutions with a stride of 2 pixels (to
double the spatial area of the output). There are no normalization or ReL.U
operations on the last layer of the network. The number of output channels

per layer is shown in (Fig. 16). Our 3D models use 3D convolutions.

Owing to memory constraints associated with graphics processing unit com-

puting, we trained the model on batches of 3D patches (64 x 64 x 32 pz3,
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YXZ), which were randomly subsampled uniformly both across all training
images and spatially within an image. The training procedure took place
in a typical forward—backward fashion, with model parameters updated via
stochastic gradient descent (backpropagation) to minimize the MSE between
output and target images. The models were trained using the Adam opti-
mizer [77] with a learning rate of 0.001 and with beta values of 0.5 and 0.999
for 50,000 mini- batch iterations. We used a batch size of 16 for the models
due to hardware restrictions, the memory on some of our GPUs was a little
low. Running on one of the following machines: titan gtx, rtx2080, gtx1080,
rtx3090, rtx3090, each model completed training in approximately 16 to 26
h.

For prediction tasks, we minimally crop the input image such that its size in
any dimension is a multiple of 16, to accommodate the multi-scale aspect of
the CNN architecture. Prediction Three-dimensional light microscopy model
results analysis and validation. For our 3D light microscopy applications,
model accuracy was quantified by the Pearson correlation coefficient between

the pixel intensities of the model’s output, y, and independent ground- truth
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Figure 4.2: Schema of the model’s composition. There are no batch nor-
malization or ReLU layers on the last layer of the network, and the number
of output channels per layer is shown above the box of each layer. Figure
adapted from Lecture Notes in Computer Science 234-241 (2015).

4.4 Transfer learning

Transfer learning (TL) is a method used to transfer knowledge acquired from
one task to resolve another[16]. For instance, before learning to fly a real
airplane, pilots use a variety of simulations, such as video games, to gain

prior skills, knowledge, and experience.

In the context of machine learning, By transferring the knowledge found in
various but related source domains, TL seeks to increase the performance
of target learners on target domains [16], [39], [40], [41]. This is very useful
when data in the target domain is scarce and it is not possible to train a
good model with it, so TL gives the model a head start. Sometimes TL is
also used to direct the model in a specific direction when the target task is

not easily deducible from the target data.
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The idea of transfer learning was first discussed in the context of education
in the last century, it was first considered in a computational context in
1995, and went through conceptual refinement in 2005 to the manner that

we comprehend it today [44].

Inductive transfer learning, transductive transfer learning, and unsupervised
transfer learning are the three subsettings most frequently used to classify
transfer learning, depending on the circumstances between the source and

target domains and tasks. [44].

Regardless of whether the source and target domains are the same or not, the
target task in the context of inductive transfer learning differs from the source
task. To create an objective prediction model for usage in the target domain
in this situation, some labeled data from the target domain are necessary.
Additionally, based on various circumstances involving labeled and unlabeled
data in the source domain, we can further categorize the inductive transfer

learning setting into two cases:

e a. There is a sizable amount of labeled data in the source domain. In
this case, the multitask learning setting and inductive transfer learning
are analogous. Multitask learning attempts to learn the source and
target tasks simultaneously, whereas inductive transfer learning simply
aspires to achieve high performance in the target task by transferring

knowledge from the source task.

e b. No labeled data in the source domain are available. In this case, the
inductive transfer learning setting is similar to the self-taught learn-

ing setting, which was first proposed by Raina et al.[78]. In the self-
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taught learning setting, the label spaces between the source and target
domains may be different, which implies the side information of the
source domain cannot be used directly. Thus, it’s similar to the in-
ductive transfer learning setting where the labeled data in the source

domain are unavailable.

In the transductive transfer learning setting, the source and target tasks
are the same, while the source and target domains are different. In this
situation, no labeled data in the target domain are available while a lot of
labeled data in the source domain are available. In addition, according to
different situations between the source and target domains, we can further

categorize the transductive transfer learning setting into two cases.

e a. The feature spaces between the source and target domains are dif-

ferent.

e b. The feature spaces between domains are the same, but the marginal
probability distributions of the input data are different. It is related
to domain adaptation for knowledge transfer in text classification, and

sample selection bias.

Finally, in the unsupervised transfer learning setting, similar to the inductive
transfer learning setting, the target task is different from but related to the
source task. However, the unsupervised transfer learning focuses on solving
unsupervised learning tasks in the target domain, such as clustering, dimen-
sionality reduction, and density estimation [79], [80]. In this case, there is no

labeled data available in both source and target domains in training.
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Approaches to transfer learning in the above three different settings can be

summarized into four cases based on “What to transfer”.

e The first context can be referred to as instance-based transfer learning
(or instance transfer) approach [45], [46], which assumes that certain
parts of the data in the source domain can be reused for learning in the
target domain by reweighting. Instance reweighting and importance

sampling are two major techniques in this context.

e A second case can be referred to as feature-representation-transfer ap-
proach [78], [81]. The intuitive idea behind this case is to learn a “good”
feature representation for the target domain. In this case, the knowl-
edge used to transfer across domains is encoded into the learned feature
representation. With the new feature representation, the performance

of the target task is expected to improve significantly.

e A third case can be referred to as parameter-transfer approach [82], [83],
which assumes that the source tasks and the target tasks share some
parameters or prior distributions of the hyperparameters of the models.
The transferred knowledge is encoded into the shared parameters or
priors. Thus, by discovering the shared parameters or priors, knowledge

can be transferred across tasks.

e Finally, the last case can be referred to as the relational knowledge-
transfer problem [84], which deals with transfer learning for relational
domains. The basic assumption behind this context is that some rela-

tionship among the data in the source and target domains is similar.
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Thus, the knowledge to be transferred is the relationship among the

data.

Transferred knowledge does not always bring a positive impact on new tasks.
If there is little in common between domains, knowledge transfer could be
unsuccessful [56]. For example, learning to ride a bicycle cannot help us learn
to play the piano faster. Besides, the similarities between domains do not
always facilitate learning, because sometimes the similarities may be mislead-
ing. For example, although Spanish and French have a close relationship with
each other and both belong to the Romance group of languages, people who
learn Spanish may experience difficulties in learning French, such as using the
wrong vocabulary or conjugation. This occurs because previous successful
experience in Spanish can interfere with learning the word formation, usage,
pronunciation, conjugation, and so on, in French. In the field of psychology,
the phenomenon that previous experience has a negative effect on learning
new tasks is called negative transfer [17]. Similarly, in the transfer learning
area, if the target learner is negatively affected by the transferred knowledge,
the phenomenon is also termed as negative transfer [44], [57]. Whether neg-
ative transfer will occur may depend on several factors, such as the relevance
between the source and the target domains and the learner’s capacity of
finding the transferable and beneficial part of the knowledge across domains.
Despite being obvious, this explanation obscures several important aspects

of negative transfer, including the next three points.:

e 1. Negative transfer should be defined with regard to the algorithm

used. It is important to consider what the negative impact is compared
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with. For example, it will be misleading to only compare with the best
possible algorithm only using the target data, because the increase in
risk (the expected value of specific task loss) may not come from using

the source-domain data, but the difference in algorithms.

2. Divergence between the joint distributions is the main cause of neg-
ative transfer. As negative transfer is algorithm specific, it is expected
to doubt the existence of a transfer learning algorithm that can always
improve the expected risk compared to its target-domain only baseline.
It turned out this depends on the divergence between distribution in
the source and the target domain [85]. Then, an ideal transfer would
figure out and take advantage of the similar part, leading to improved
performance. However, if an algorithm fails to discard the divergent

part and instead rely on it, one can expect negative transfer to happen.

3. Another important factor of negative transfer is the size of the
labeled target data, which can have a mixed effect. On one hand,
for the same algorithm and distribution divergence, negative transfer
condition depends on how well the algorithm can do using target data
alone. Where there is no labeled target data, only using unlabeled
target data would result in a weak random model and thus negative
transfer conditions are unlikely to be satisfied. When labeled target
data is available, a better target-only baseline can be obtained using
semi-supervised learning methods and so negative transfer is relatively
more likely to occur. At the other end of the spectrum, if there is

an abundance of labeled target data, then transferring from an even
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slightly different source domain could hurt the generalization. Thus,

this shows that negative transfer is relative.

In the recent years researchers started incorporating this tool in their research
in the fields of microscopy [86], biology, genetics etc. to benefit tasks such as
protein folding, and labeling cancer cells (add references). In this research we
present an innovative use of TL to learn about organelle - organelle spatial
dependencies. Our objective was to measure the interactions between differ-
ent organelles. We believe that the information about the structure, organi-
zation, and patterns, is stored in the networks we have trained in advance.
Thus, to create a measurable analysis, we wanted to pass this knowledge from
one network to another and study the impact it creates, our approach is un-
der the instance-based transfer learning case. The method we came up with
was applying Transfer Learning on our initial networks. We load the weights
generated by network A (that predicts organelle A) as an initialization for a
new network that we are going to train to predict organelle B. The results
of the new network MAp_, g are compared to the results of the original net-
work M pgr_,g that predicts organelle B in order to determine if organelle B
is spatially dependent on organelle A (Fig. 3.14). Using the Wilcoxon signed-
rank test, we make sure that we only compare the findings that are statisti-
cally significant. We measure the positive change in correlation (significance
of our prediction). The PCIC (positive change in correlation) as follows:

PCIC = % where-dif f = Mfp .5 — Mjr_, g We also measured

the negative change (NCIC) in a similar fashion: NCIC = M‘ﬁff .

BF—B

I would like to express two important disclaimers:
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e The performance of label free models can be enhanced with the help
of TL as shown in [34][87]. It is critical to recognize that this work
does not center on accomplishing it. By analyzing how various net-
works interact with one another, we use TL to learn about the spatial

dependencies between organelles.

e Intentionally, we utilized a really rudimentary TL method. Although
we might have used a variety of methodologies and procedures to im-
prove the performance for each structure depending on its particular
characteristics, our objective was to provide results that were simple to

compare.
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Chapter 5

Discussion and Conclusions

To provide a comprehensive methodology for predicting organelle-organelle
interactions, as well as measuring the magnitude of the impact structures
have on each others’ location. We have investigated a unique dataset of
3D microscopy imaging, investigated the limitations and weak points of the
in-silico labeling method as well as methods to enhance it, and applied an
innovative approach for using transfer learning. The main outcome of this
research is a prototype of a data-driven organelle interactome atlas with
computationally predicted organelle-organelle interactions, represented as a
directional weighted graph. In this graph one can see the impact each or-

ganelle has on its neighbors and the magnitude of this impact.

Our method is a powerful tool for giving Biologists an intuition about the
inner workings of the cell. It can be used to reveal new intricate connections
between organelles in the cell, revealing unknown components in systems and

pathways in the cells’ function. By revealing these new insights that were
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not available with currently existing tools researchers will be able to develop
new specific and impactful medical treatments such as drugs, genetic modifi-
cations and even diet alterations that can save patients lives. Following this
logic, and also based on our results with drug perturbations (Fig. 3.10 ) our
method can actualize as a tool for measuring the impact of different treat-

ments and procedures on spatial dependencies in multi organelle systems.

The fresh viewpoint on TL that this research offers is another important
outcome; in this case, we used it to discover spatial relationships rather than
to enhance learning. To access the features that the model has learned, in
other words. It is important to notice that our results represent the features
that our method was able to learn given the data that was available to us
and under the time constraints of a masters degree . Here I would like to
list some limitations, constraints and possible pitfalls our research is prone
to suffer from: variance in cell types, as well as in the imaging resolution,

leakiness of in-silico predictions, sensitivity of our method.

Areas of challenge: First I would like to address the issue of variance in cell
types, there are many different types of cells in different organs of our body.
These differences are important for our body’s healthy operation, in addition
there is also the difference of these cells among different ethnicities and cul-
tures. These differences will oftentimes be expressed in different shapes and
compositions of their organelles, but more importantly in order to execute
different functionalities the interactions between different organelles will dif-
fer, obviously leading to different outcomes in our method. Addressing this

will require extensive work of acquiring datasets of imaging of cells with dif-
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ferent characteristics and analyzing them. Staying on the topic of variance
of our data, it is also important to notice that different imaging data has
different imaging resources, variety in quality, resolution and other technical
conditions. Even in our own data set we had batch effects which we addressed
(in chapter. 4.2 ) by preprocessing and eliminating problematic days. It is
interesting to note that some organelle interactions occur at multiple spatial
scales [88]. This phenomena might be captured if data with variable range
scale will be available, then the atlas would have to have different layers to

reflect this.

Variance in the resolution of structures is another issue, some imaging reso-
lutions are able to capture bigger structures like the nucleus, but Golgi and
Desmosomes lack important structural resolution. To solve this issue much
higher resolution images would be required, the down side of this solution will
be the significant increase in computation time and resources required. We
managed this problem by measuring the impacts relatively in a manner that
takes into account the performance of the in-silico models for each structure
(Fig. 3.22(a)). Taking a step back it is also important to notice that the
method of in-silico that we rely on is also not fault proof, thus validations
on data from multiple sources is required in order to validate the results. To
complete this atlas data for more organelles is required, which is not bio-
logically yet possible to annotate ground truth images of all organelles in a

complete manner.

Negative transfer learning (NTL) is another topic that requires further inves-

tigation in this context, as the main reasons for this phenomena are explained
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it is important to further investigate the cause in our case, we have a few
suspicions that we didn’t have time to validate: First is very straight for-
ward, models that have really poor result to start with, will only confuse the
model we are trying to train, thus it will cause NTL. Structures might have
negative relations with each other, canceling each other might be reflected as
NTL. Imaging differences between the source and target datasets like high

variance in the resolution, quality, etc. might also result in NTL.

Together, the computational strategies addressed in this study demonstrate
how image-based information can be measured, incorporated, and explored
in the context of data-driven cell biology. Future research must solve the
mentioned crucial issues in order for this potential to be fully fulfilled. In the
long term, we envision a comprehensive cell atlas, which can be mined for
patterns and relationships across a wide range of experiments and modali-

ties.
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