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Abstract 

High-content image-based screening is a powerful tool for identifying phenotypic differences in cell 

populations. In my dissertation, I am proposing anomaly detection as a new measurement for the sensitive 

detection of phenotypic alterations in high-content image-based phenotypic screens. Anomaly detection, 

aimed at detecting abnormal observations that deviate from a baseline distribution, is especially suited for 

screening because many replicates of control experiments define the baseline distribution, and few 

replicates of many perturbations are potential anomalies from this baseline distribution. Specifically, I 

trained autoencoders to reconstruct the control phenotypic profiles and used the reconstruction error as a 

measurement for anomaly detection. I implemented this idea in three modes: feature-based organelle 

anomaly, feature-based inter-organelle anomaly, and image-based inter-organelle anomaly. My results 

suggest feature-based modes are more sensitive and complementary, but slightly less reproducible, 

compared to the common statistical approach. My preliminary results with image-based anomaly indicate 

the potential to uncover spatial dependencies between the organelles. Further investigations are needed to 

validate these results.  
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Introduction 

Cells are the fundamental unit of structure and function of all organisms. Organelle and subcellular 

organization form the underlying basis for cellular complexity. Visual cell phenotypes, 

characterized by the morphological features of a cell such as a cell shape and molecular 

composition, can serve as powerful readouts for cell state [1-5]. Alterations in visual cell 

phenotype, such as changes in cell shape and organelle organization, can provide insight into the 

cell's physiological state, as well as assist in the diagnosis and treatment of diseases [5-8]. 

High-content image-based screening combines automated microscopy and automated image 

analysis to identify phenotypic alterations in cell morphology, dynamics, and/or molecular 

composition [9-16]. To identify hits in a screen, the deviation of the cells’ phenotype from each 

treatment is measured and compared to the phenotype of untreated/control cells. For example, one 

can define phenotypic variation as the fraction of features that dramatically deviated from the 

control in response to treatment [16]. Current measurements of magnitude, for which a treatment 

deviates from the control, hold the implicit assumption of independence between features. 

However, features are interdependent, even after feature selection, because an alteration in a 

feature can be derived from non-linear convoluted dependencies between other features [17]. For 

example, the variation and/or deviation of cells’ intracellular organization may be largely 

explained by the cells’ shape [18]. Explicitly measuring these complex dependencies for all 

features is not feasible due to the curse of dimensionality [17]. Thus, the biological function 

investigated may be incorrectly interpreted due to a simplified representation of the underlying 

data complexity. 

I propose to employ anomaly detection methods to identify hits on screens. Anomaly detection 

aims at detecting abnormal observations that deviate from a predefined baseline pattern [19] and 

has vast applications in bioinformatics [20-21], healthcare [22], and cyber-security [23]. Anomaly 

detection relies on statistically characterizing the data distribution and defining observations that 

do not conform to this distribution as anomalous. Different approaches, such as neighbor-based 

[24-25] and isolation-based [26] were applied for anomaly detection, with deep learning emerging 

as especially powerful in recent years [27]. The advantage of deep neural networks stems from 

their ability to integrate massive amounts of complex data into a generalized model that captures 

the inherent representation of the data distribution [28-29]. High-content image-based screens 

obtain many replicates of control experiments and many perturbations, with a few replicates for 

each perturbation. These properties naturally align with the formulation of an anomaly detection 

problem: the many control experiments are used to statistically define reliable baseline patterns, 

and hits are defined and ranked according to their deviation from the baseline. 

The Cell Painting assay is widely used for image-based high-content phenotypic screening. Cell 

Painting enables simultaneous analysis of multiple organelles, by staining the cells with six 

fluorescent dyes, imaged in five different channels (i.e., modalities) [30] The ability to capture the 

different modalities simultaneously makes it perfect to elucidate a detailed phenotypic profile. 
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There are several public datasets of high-content phenotypic screening using cell painting such as 

[10, 16, 31]. In my work, I used a public Cell Painting screening dataset with 30,000 small-

molecule perturbations [10]. 

In my research, I explored three modes of hits identification using anomaly detection in Cell 

Painting high-content image-based screens. Two of the three modes are based on features derived 

from (1) organelles, (2) inter-organelle dependencies, and the third is image-based to harness 

spatial information. Common to all modes is the method used for anomaly detection. First, training 

deep neural network-based autoencoders to compress feature- or image-based representations of 

single cells in control experiments. Second, using the distribution of the control cells’ 

reconstruction error as the baseline pattern. Finally, defining hits as treatments that have 

reconstruction error, which deviates from the baseline by some magnitude. The mode relying on 

organelle-derived features is based on autoencoders that map each modality (organelle) to itself, 

while the mode relying on inter-organelle dependencies maps several modalities to another 

modality. Applying these approaches, I demonstrate that anomaly detection can lead to more 

sensitive hits identification compared to direct assessment of feature deviation from the control. 

While inter-organelle anomaly detection proved to be more sensitive and complementary to the 

common statistical approach, it failed to outperform organelle anomaly detection. Further 

investigation of the organelle anomaly detection showed that it produces a slightly reduced level 

of reproducibility suggesting that the current implementation is not sufficiently powerful. Further 

investigations, especially related to the removal of batch effects, could harness the full potential of 

anomaly detection as an effective measure to capture complex feature dependencies. Promising 

preliminary results using image-based anomaly detection, that harness the spatial information 

between the organelles, highlight its potential for uncovering inter-organelle spatial dependencies.   
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Related Work 

My thesis lies in between the computational and experimental disciplines, specifically covering 

anomaly detection, deep neural networks, high-content image-based phenotypic screening, and 

intra-cellular organization.  

Anomaly Detection 

Anomaly detection is the task of identifying observations that do not conform to the expected 

patterns in a dataset. Anomalies may indicate rare or unusual phenomena that warrant further 

investigation or may be indicative of problems that need to be addressed. Anomaly detection has 

a wide range of applications, including fraud detection, equipment failure prediction, and 

cybersecurity [19]. Among the computational approaches applied to detect anomalies are statistical 

methods, rule-based systems, and machine learning algorithms. Statistical methods involve 

analyzing the distribution of the data and identifying observations that fall outside of a specified 

range defined by the baseline distribution [32-35]. Rule-based systems rely on predefined rules or 

thresholds to identify anomalous data points [36-37]. Machine learning approaches involve 

training models on baseline data and using the trained models to identify anomalies that deviate 

from the distribution of the baseline data [38-39]. 

Traditional machine learning techniques for identifying outlier points typically rely on the 

examination of the local neighborhood of a candidate point, utilizing methods such as k-NN [40] 

or LOF [24]. These techniques assign a score to each data point based on its local neighborhood 

and use this score to determine which points are considered outliers. A significant limitation of 

these traditional techniques is the high computational complexity and resources required to process 

large datasets, making it infeasible to apply them in practice. To tackle this limitation, several 

techniques focus on learning the baseline distribution by subsampling the dataset. For example, 

decision trees partition the data into sections by the features' values. Each internal node represents 

a condition on one randomly chosen feature which separates the data points into two subgroups 

until every data point is isolated. These techniques assume that anomalous data points are more 

likely to be isolated from the baseline data, i.e., to be in an isolated partition [26, 41-43]. The 

limitation of such techniques is that such simple models can’t handle complex data with non-linear 

interdependencies between the features. 

Deep learning, which involves the training of artificial neural networks on large datasets, has had 

a significant impact on the field of anomaly detection. The capacity of deep neural networks to 

learn and identify patterns and non-linear relationships in data renders them particularly well-

suited for tasks such as anomaly detection [27]. For example, Han et al. trained generative 

adversarial networks (GANs) to reconstruct brain images and successfully identify abnormal 

brains that suffered from Alzheimer's disease [21]. The authors demonstrated the efficacy of their 

network through training on healthy brain images and evaluating its ability to identify Alzheimer's 
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brain images, as evidenced by a higher reconstruction error. Additionally, the authors reported a 

correlation between the reconstruction error and the stage of the disease.  

In my research, the identification of treatments impacting cellular state is attempted through 

anomaly detection, where deviation from the baseline distribution of untreated control cells serves 

as a baseline for indication of treatment effects. 

High-Content Phenotypic Screening 

High-content phenotypic screening (HCS) is the integration of automated microscopy and image 

analysis to collect and analyze large volumes of cells under different perturbations. It combines 

the efficiency of high-throughput screening of small-molecule with the ability of cellular imaging 

to collect quantitative data from complex biological systems [44-45]. HCS serves multiple 

applications such as clustering compounds into functional pathways, identifying phenotype 

signatures of specific diseases, and identifying drug mechanisms of action [16, 46-48]. One 

application of HCS is screening large compound libraries by performing experiments with each 

compound and assessing those that caused the largest deviation of the cell phenotype [49]. Those 

compounds that caused the largest phenotypic variation are called “hits” and are followed up in 

more depth to validate their phenotypic effect and whether it is linked to a desired function/cell 

state [15]. HCS technology, and specifically the Cell Painting Assay, has now expanded 

throughout all the different stages of the drug development process and is considered a mainstream 

technology in the pharmaceutical industry [45, 49-50]. 

Bakal et al. analyzed cells under various treatment conditions using quantitative features [48]. To 

transform the extracted features into biologically meaningful morphological indicators, they 

trained a set of neural networks that take single-cell morphological features and give them a score 

for each treatment. Using those scores, they managed to discriminate seven reference treatment 

conditions with distinctive morphologies.  

Gustafsdottir et al. used clustering to identify compounds with similar effects [47]. To create the 

morphological profile for each cell they used a software called CellProfiler [51]. This computer 

vision software creates high-quality morphological profiles for each cell in the microscopy images, 

by extracting features such as cell shape, intensity, and texture, i.e., for each cell. The 

morphological profiles can then be further analyzed for clustering similar profiles, classifying, 

visualizing, etc. [9]. After they have extracted the profiles, they calculated the baseline profile of 

a cell which is how an average cell looks without any special treatment. Then, they calculated the 

Euclidean distance between each compound and the mock profile and identified the clusters based 

on that distance. 

Way et al. performed a systematic comparison between the Cell Painting assay and a gene-based 

assay called Gene Expression [16]. Differently from Cell Painting, in Gene Expression the levels 

of different RNAs that are being produced in the cell are measured. Both the gene expression and 

morphology change as cells respond to perturbations. In their work, they compared the sample 
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diversity, feature diversity, and other differences in characteristics between the assays. They also 

introduce a systematic way for measuring the ability to reproduce readouts from repetitions of the 

same compound, named ‘Percent Replicating’. In my work, I will use this measurement to assess 

different hits identification approaches. 

Organelle-Organelle Organization 

Organelles are molecular machines that define cell architecture and function. While many studies 

focus on the role and structure of individual organelles, it is less known how different organelles 

coordinate their organization and function within the cell [5-7].  

Friedman et al. observed the contact sites between two organelles, mitochondria and the 

endoplasmic reticulum (ER), and examined the role of ER in mitochondrial division showing that 

the ER-mitochondrial interface is indeed vital for function [4]. Wu et al. and Cohen et al. showed 

that the ER promotes a variety of key functions in the cell via its membrane contact sites with 

various other organelles, such as Ca2+ exchange and organelle biogenesis [5, 8]. Furthermore, 

dysfunctions in the inter-organelle organization were recently linked to several diseases, for 

example, defects in membrane contact sites between the ER and the mitochondria are thought to 

have implications in cancer, neurodegenerative disorders, and diabetes [5-7]. 

Monitoring the dynamics of multiple organelles simultaneously in the same cell and analyzing 

their interactions is key to elucidating the complex interaction network that plays a critical role in 

every living organism. Valm et al. applied spectral imaging to simultaneously image six 

endogenously-engineered labeled organelles, setting the current upper limit for simultaneous live 

imaging of multiple organelles in the same cell [52]. For fixed cells, Bray et al. describe an assay 

called ‘Cell Painting’ [30]. In ‘Cell Painting’ each image is composed of five fluorescent channels 

marking different cell organelles. In my work, I will use images that have been through such a 

process to be able to capture the dependencies between the organelles. 

Deep learning in microscopy 

Deep learning has revolutionized machine-learning-driven fields by generating a hierarchy of 

features directly from the data during the model optimization process. This is achieved by training 

the deep neural network to map its input to the corresponding ground truth annotation. This has 

led to new and improved solutions for a variety of tasks, including bioimage analysis and 

computational tasks.  

One example of a computational task is the work of Ouyang et al., who used neural networks to 

reconstruct super-resolution images from sparse, rapidly acquired localization images and/or 

widefield images [53]. Similarly, Ounkomol et al. were able to construct fluorescence images of 

the cell's organelles from the bright-field image, suggesting that the bright-field image contains 

spatial features of its organelles [54]. Inspired by this work, I will use a neural network, specifically 

the ‘U-Net’ architecture, to construct a fluorescence image of one organelle by learning the spatial 
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dependence between the different organelles. The ‘U-Net’ architecture, invented by Ronneberger 

et al., is considered state-of-the-art in biomedical image processing [55] due to its localization 

ability, i.e., each pixel in the output image is influenced by the corresponding pixel in the input 

image.  
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Results 

Anomaly detection for hit identification in Cell Painting data 

For the application of screening, I used a cell painting dataset containing cells treated with over 

30,000 different compounds [10] (Fig. 1A). This dataset comprises 406 plates, each plate 

representing a distinct experiment. Each plate is composed of 64 control wells and 320 treated 

wells, with each well containing hundreds of cells that were perturbed by the same compound. 

Each compound appears in multiple wells across different plates. The number of replicates varies 

from one component to another, and the number of replicates is between one and eight. 

Approximately 25,000 compounds have four replicates, making out the bulk of the experiment. 

CellProfiler [51] was used to extract, for each cell, five vectors, one per channel, for a total of ~600 

features that describe the cell’s morphology (e.g., size, shape), fluorescent intensity, and texture. 

Hits in this screen were determined according to their phenotypic deviation from the control 

experiments.  

Formulating hit detection as an anomaly detection problem allowed me to harness the data 

asymmetry, represented by high volumes of control data (Fig. 1B), to train a baseline 

“autoencoder” deep neural network (DNN). The autoencoder compressed the information in 

control cells’ feature vectors thus capturing the multi-dimensional interrelationships between the 

features in the control cells (Fig. 1C). The autoencoder architecture consists of an “encoder” DNN 

that transforms the input feature representation of a single cell to a “latent vector”, a compressed 

representation of the information in control cells’ feature vectors. This latent vector is given to a 

decoder DNN that reconstructs back the input. The autoencoder is trained to minimize the 

discrepancy between the input and reconstructed feature vectors. In inference, the baseline 

autoencoder is applied on feature vectors derived from perturbed cells, and the corresponding 

reconstruction error is calculated (Fig. 1D). Perturbations that did not impose a major shift in the 

cell are expected to result in a low reconstruction error compared to control cells, indicating the 

corresponding treatments have no effect or a subtle effect on the cell morphology. Treatments that 

result in a high reconstruction error, compared to the underlying error distribution of the control 

cells are considered as hits, i.e., candidates for further validation and exploration (Fig. 1E). 

The autoencoders were optimized for each organelle independently, allowing differential analysis 

of the organelle-specific effect of the treatment. As a complementary analysis, I trained an 

autoencoder on the concatenation of all five organelles combined and achieved similar results 

(Comparison in Supplementary Fig. 1). 
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Figure 1. Detecting hits using Anomaly Detection. (A) The dataset consists of five different channels of organelles 

based on the ‘Cell Painting’ assay. (1) Nucleus (DNA), (2) Endoplasmic reticulum (ER), (3) Nucleoli, cytoplasmic 

RNA (RNA), (4) F-actin cytoskeleton, Golgi, plasma membrane (AGP), and (5) Mitochondria (Mito). (B) An 

illustration of a plate in the dataset. Each dot represents a well. Blue dots represent control wells, and each red dot 

represents a well with a unique treatment. (C) Training of an autoencoder, for each channel, to minimize the 

reconstruction error on the control cells. Each colored square represents an organelle's channel. (D) The trained 

autoencoder is used to predict the perturbed cells. A high magnitude of phenotypic deviation (star instead of square in 

the illustration) that is outside of the control variability, would cause a failure in reconstructing it by the autoencoder 

(anomalous square in the illustration), leading to high reconstruction errors. (E) The compounds are screened 

according to the reconstruction errors, and ”hits” are identified as compounds that lead to high reconstruction errors 

with respect to the reconstruction error of the baseline control population.  
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Organelle anomaly detection as sensitive and complementary readout 

I evaluated the performance of the suggested organelle anomaly detection and compared it to the 

current mainstream screening readout which is based on the statistical changes of the features from 

different organelles. To compare those readouts, I used a metric called ‘Signature Strength’ 

developed by [16]. Signature strength measures the fraction of features that passed a threshold for 

treatment. The signature strength depends on two parameters. One is the threshold, which I will 

refer to as the “signature threshold”, which defines what is a “strong” feature. Second is the number 

of replicates as this metric provides higher value to compounds with more replicates, see Methods 

for full details. To systematically analyze the readouts, I present the distribution of signature 

strength using various signature threshold values while utilizing all compounds regardless of the 

number of replicates. 

I systematically assessed the signature strength for different threshold cutoffs (Fig. 2A). Since the 

main focus of any screen is the “hits”, those treatments that deviate significantly from the control 

and that are considered for further exploration, I assessed the full distribution, the top 5% and the 

top 1% of hits. When considering the full range of treatments, the statistical readout had higher 

signature strengths than the organelle anomaly readout. However, for subsets of treatments with a 

higher effect this trend flipped. Specifically, the top 1% of hits were characterized by higher 

signature strength for organelle anomaly concerning the statistical readout. Moreover, the 

sensitivity is gradually increasing when being more stringent about which features significantly 

deviate from the background, with increasing threshold, as measured systematically (Fig. 2B). One 

possible explanation for this observation is that, with lower signature thresholds, small variations 

are considered hits. The use of a method that does not account for the interdependencies of all 

features increases these small variations that otherwise would be described by the other features 

and thus increases the likelihood of false positives. By learning the interdependencies, my 

approach assigns a lower score for these treatments. Thus, the current statistical method appears 

more sensitive to these treatments than the proposed approach. 

I next asked whether organelle anomaly finds more and different hits with respect to the statistical 

readout. I defined different thresholds for the signature strength, pooled all compounds that had a 

phenotypic alteration greater than a given threshold, and compared which hits were identified by 

each of these readouts. While there was a large agreement between the two readouts, as the criteria 

for deviation increased, the organelle anomaly method dominated with more hits, with respect to 

the statistical readout (Fig. 2C). These results suggest that organelle anomaly detection is a 

complementary readout that uncovers new compounds that could not be discovered otherwise. 
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Figure 2. Organelle anomaly detection is a sensitive readout that finds complementary hits to the statistical 

readout. (A) The distribution of the signature strength with different signature thresholds (X-axis) for the organelle 

anomaly detection (blue) and statistical (orange) readouts. From left to right, each plot shows the distribution for all 

compounds, top 5%, and top 1% hits. (B) Each plot depicts the difference in signature strength between the organelle 

anomaly readout and the statistical readout (Y-axis) for each channel. The difference is computed across different 

thresholds that are used to compute the signature strength (X-axis). Each point is the mean difference across all the 

treatments. ‘All’ is the combined effect for all features across five organelles. (C) Each plot shows the fraction of 

‘hits’ that are uniquely classified by each readout (Y-axis). In blue - organelle anomaly detection, In orange - statistical 

readout, and In green - both readouts identified those treatments. From left to right, each plot uses a different signature 

threshold for signature strengths, 2, 4, and 6. The “hits” are identified as treatments that cross a particular “hit 

threshold” (X-axis).  
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Reproducibility of organelle anomaly detection readout 

Reproducibility is a critical aspect of the drug discovery process, as it helps to ensure that positive 

results are not due to chance or experimental error and increase confidence in the effectiveness of 

the treatment being screened. This is particularly important given the high failure rate of drug 

development, where only a small percentage of treatments that enter clinical trials ultimately 

receive regulatory approval [56]. Reproducibility is achieved through the independent replication 

of experiments by different research groups or by repeating the same experiment multiple times. 

This helps to ensure that the results are robust and that any potential biases or limitations of the 

study have been identified and addressed.  

To analyze the reproducibility of the organelle anomaly readout compared to the statistical readout, 

I used a reproducibility measurement referred to as ‘Percent Replicating’ developed by [16]. This 

metric is based on the non-parametric test. For each treatment, the median correlation between its 

replications is compared to those of randomly generated compound combinations. Each treatment 

gets a p-value, based on this test, and the percent replicating is the proportion of the treatment 

population that gets a p-value below the significance level, see Methods for full details.  

Here, I analyze treatments that have four repetitions in the dataset (Fig. 3) as they are the vast 

majority concerning their number of replicates. Analysis among all these treatments shows that 

organelle anomaly detection readout has slightly reduced percent replicating compared to the 

statistical readout with a significance level of 0.05 and the same percent replicating with a 

significance level of 0.01 (Fig. 3A). On the contrary, the proposed approach demonstrated a lower 

median correlation between replicates compared to the statistical readout, indicating that 

reproducibility was more challenging using this method. This discrepancy may be attributed to an 

over-amplification of the stringency of the treatments. 

Reproducibility is especially critical when considering the ‘hits’ of treatments. Analysis of the 

percent replicating within the top ten percent of treatments based on signature strength revealed 

that the proposed approach exhibited lower levels of reproducibility in comparison to the current 

method. However, when the signature threshold for signature strength was increased, the gap 

between the approaches narrowed and even reversed (Fig 3B). 
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Figure 3. Organelle anomaly detection is slightly less reproducible. (A) The distribution of the reproducibility 

negative log non-parametric p-value (Y-axis) for the organelle anomaly detection (blue) and statistical (orange) 

readouts for each treatment corresponded to its median pairwise correlation (X-axis). From the bottom up, the black 

dashed lines represent significance levels of 0.05 and 0.01. The corresponding percent replicating is stated above each 

line, color encoded. (B) Each plot depicts the distribution of the negative log non-parametric p-value of the 

reproducibility test (Y-axis) for the organelle anomaly detection (blue) and statistical (orange) readouts for “hits”. 

“Hits” are selected as the upper 10% of signature strength, using different signature thresholds, from left to right, 2, 

4, 8, and 14. Above each distribution is the percent replicating using a significance level of 0.05 (shown as a dashed 

line). 
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Inter-organelle anomaly detection is a sensitive and complementary 

readout 

Current measurements used for identifying hits in screens focus on the concatenation of features 

from individual organelles, thus uncovering compounds that lead to organelle perturbations (Fig. 

4A, top-right). On the other hand, more and more recent studies indicate that the organelles' spatial 

relationship is the key to proper or improper functionality of the cell [5-6]. For instance, a recent 

study connected improper contact between the ER and the mitochondria thought to have 

implications in cancer, neurodegenerative disorders, and diabetes [5, 57]. Thus, the statistical 

approach may identify hits that seem to “fix” the organelle deviation but miss that these hits may 

perturb the inter-organelle organization or miss hits that “fix” inter-organelle deviations (Fig. 4A, 

bottom-left).  

To identify compounds that perturb inter-organelle organization I designed an autoencoder that 

maps the concatenation of feature vectors from four organelles to the fifth (Fig. 4B). This is done 

for each 4-1 organelle mapping. During training, the autoencoders try to minimize the 

reconstruction error and thus learn the mappings between each organelle to the rest in control cells. 

When the inter-organelle dependencies are perturbed, the reconstruction errors significantly 

deviate from the reconstruction errors in the control cells, similar to what I described for a single 

organelle in Fig. 1.  

Inter-organelle anomaly was more sensitive for the more prominent hits, as measured with those 

with high signature strengths (Fig. 4C) or ones that were selected based on a higher threshold on 

what defines a significant deviation of a feature (Fig. 4D). Inter-organelle anomaly mirrored the 

complementary capabilities of the organelle anomaly dominating the number of unique significant 

“hits” at higher hit identification criteria (Fig. 4E). 
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Figure 4. Inter-organelle anomaly detection framework provides a sensitive readout that finds complementary 

hits to statistical readout. (A) Schematic representation of the organization of five organelles (color code) in Control 

cells (upper left). Current readouts are designed for identifying alterations in single organelles (upper right: green 

star). My inter-organelle readout is designed to identify alterations in organelle-organelle dependencies (bottom left: 
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green square changing its position concerning the other squares). My readout is expected to capture alterations in 

inter-organelle that are not detected with the current readouts (bottom left), and to be more sensitive when both 

organelle and inter-organelle organization are altered (bottom-right). (B) Training of an autoencoder to minimize the 

4-1 organelle mapping error on the control cells for each channel. (C) The distribution of the signature strength with 

different signature thresholds (X-axis) for the organelle anomaly detection (blue) and statistical (orange) readouts. 

From left to right, each plot shows the distribution for all compounds, top 5%, and top 1% hits. (D) Each plot depicts 

the difference in signature strength between the organelle anomaly readout and the statistical readout (Y-axis) for each 

channel. The difference is computed across different thresholds that are used to compute the signature strength (X-

axis). Each point is the mean difference across all the treatments. ‘All’ is the combined effect for all features across 

five organelles. (E) Each plot shows the fraction of ‘hits’ that are uniquely classified by each readout (Y-axis). In blue 

- organelle anomaly detection, In orange - statistical readout, and In green - both readouts identified those treatments. 

From left to right, each plot uses a different signature threshold for signature strengths, 2, 4, and 6. The “hits” are 

identified as treatments that cross a particular “hit threshold” (X-axis). 
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Inter-organelle and organelle anomalies identify very similar hits  

I compared the two anomaly-driven approaches, an organelle anomaly versus an inter-organelle 

anomaly. My analysis showed very similar distributions of signature strength (Fig. 5A), sensitivity 

analysis (Fig 5B), and complementariness analysis (Fig. 5C). The fact that both organelle anomaly 

and inter-organelle anomaly identified the same hits implies that they perform similar encoding 

the cells composition and intracellular organization. Thus, these results suggested that the inter-

organelle approach relied mostly on the anomaly detection architecture itself as the power source 

rather than encoding the interrelationships between the organelles.  
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Figure 5. Inter-organelle anomaly detection is as sensitive and complementary as organelle anomaly detection. 

(A) The distribution of the signature strength with different signature thresholds (X-axis) for the inter-organelle 

anomaly detection (blue) and organelle anomaly detection (orange) readouts. From left to right, each plot shows the 

distribution for all compounds, top 5%, and top 1% hits. (B) Each plot depicts the difference in signature strength 

between the inter-organelle anomaly readout and the organelle anomaly detection readout (Y-axis) for each channel. 

The difference is computed across different thresholds that are used to compute the signature strength (X-axis). Each 

point is the mean difference across all the treatments. ‘All’ is the combined effect for all features across five organelles. 

(C) Each plot shows the fraction of ‘hits’ that are uniquely classified by each readout (Y-axis). In blue - inter-organelle 

anomaly detection, In orange - organelle anomaly detection readout, and In green - both readouts identified those 

treatments. From left to right, each plot uses a different signature threshold for signature strengths, 2, 4, and 6. The 

“hits” are identified as treatments that cross a particular “hit threshold” (X-axis). 

 



18 

 

Focus on uncorrelated organelles does not show the superiority of 

inter-organelle versus organelle anomalies 

I hypothesized that the similarity in organelle and inter-organelle anomaly stems from the fact that 

the different organelles are highly correlated to one another. Organelle-organelle correlations were 

calculated as the average feature-wise Pearson correlation among the control cell population. 

These correlations showed high correlations between the DNA and ER channels and between the 

RNA and Mito channels (Fig. 6A). With this result, I focused on organelle combinations that were 

not strongly pairwise-correlated, specifically each autoencoder had two organelles as input and 

one as output. Details on the channel triplets used in Fig. 6B. Still, the results in terms of signature 

strength, sensitivity, and complementariness did not outperform the organelle anomaly 

measurement (Fig. 6). These results imply that capturing the relationship between the organelles 

by using the extracted features only cannot be attained as the features of the organelles are 

generally correlated.  
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Figure 6. Removing correlated channels did not improve the performance of the inter-organelle approach. (A) 

The average paired single-cell level correlation between the channels. Each square depicts the correlation level 

between two different channels. (B) The organelles mapping in the inter-organelle anomaly detection after removing 

correlated channels. (C) The distribution of the signature strength with different signature thresholds (X-axis) for the 

inter-organelle anomaly detection (blue) and organelle anomaly detection (orange) readouts. From left to right, each 

plot shows the distribution for all compounds, top 5%, and top 1% hits. (D) Each plot depicts the difference in signature 

strength between the inter-organelle anomaly readout and the organelle anomaly detection readout (Y-axis) for each 

channel. The difference is computed across different thresholds that are used to compute the signature strength (X-

axis). Each point is the mean difference across all the treatments. ‘All’ is the combined effect for all features across 

five organelles. (E) Each plot shows the fraction of ‘hits’ that are uniquely classified by each readout (Y-axis). In blue 

- inter-organelle anomaly detection, In orange - organelle anomaly detection readout, and In green - both readouts 

identified those treatments. From left to right, each plot uses a different signature threshold for signature strengths, 2, 

4, and 6. The “hits” are identified as treatments that cross a particular “hit threshold” (X-axis). 
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Noisy reconstruction error leads to less reproducible anomaly 

detection  

The lower reproducibility of anomaly detection methods was surprising, especially when focusing 

on the top hits. Anomaly detection was more sensitive than a direct assessment of feature deviation 

from the control, and this higher sensitivity was more pronounced as hits became more prominent. 

This describes an amplification of anomalous hits that intuitively should lead to enhanced 

reproducibility - deviating features are amplified above the noise, amplifying the correlation 

between replicates and leading to enhanced reproducibility. I looked closely at “hits” with high 

signature strengths that failed at reproducibility. I found that organelle anomaly detection features 

suffer from extremely high variation between the replicates (Fig. 7, blue), contrary to the low 

variations in the direct assessment of feature deviation from the control (Fig. 7, orange). This 

variability leads to lower correlations between replicates. The extreme z-scores values are probably 

caused due to the model’s inability to generalize the control population distribution to the 

anomalous hits. A further examination of the generalization of the baseline model by adding a 

systematic technique to cancel out this noise, like adding l2 regularization loss or using ensemble 

learning, is left for future work. 

Figure 7. Anomaly detection readout contains noisy replicates. Each plot shows the deviation of each feature from 

the baseline population across the replicates of a single compound. The replicate values are shown as a dotted line and 

the median profile is in bold. Anomaly detection (blue), note that many replicate values are beyond the y-axis values 
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(not shown for visualization purposes), and direct assessment of feature deviation from the control (orange). On the 

right are the scores achieved by each compound. SS = signature strength, MPC = median pairwise correlation, RPV= 

reproducibility non-parametric p-value. 
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Image-based inter-organelle anomaly is more sensitive than organelle 

anomaly 

As shown in Fig. 5-6, the inter-organelle approach suffers from the lack of spatial reference 

between the organelles that cannot be attained while using the extracted feature. Thus, my next 

attempt was to assess the idea of detecting anomalies directly from the raw image data. I used a 

U-Net network, introduced by [55], which is a convolutional autoencoder with unique localization 

ability. This ability is attained by using skip connections between the encoder and the decoder thus 

transferring localization information between the input and the output. This ability makes this 

network suited to the task of capturing the inter-organelle dependencies. For the inter-organelle 

anomalies, the target of the network was one organelle’s channel, and the input was the other four 

organelles’ channels. For the organelle anomaly, the network reconstructed the same organelle 

channel. The image data provides spatial context that is lost in the feature representations that 

encode organelle statistics without spatial context. My preliminary results were encouraging, 

showing that inter-organelle anomalies are more sensitive than organelle anomalies (Fig. 8). These 

results could imply that the spatial context in the images aid in the effective encoding of inter-

organelle organization, but this has to be further validated in terms of reproducibility analysis, 

which is left for future work. 

 

Figure 8. Inter-organelle visual anomaly detection framework provides a sensitive readout. Each plot depicts 

the normalized (concerning the controls) deviation in the corresponding organelle image anomaly detection (X-axis) 
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concerning the deviation in the inter-organelle image anomaly detection (Y-axis). Each data point is the normalized 

value for a given well. The color indicates the plate. “All” is the combined effect across the five channels (AGP, DNA, 

ER, MITO, RNA). The vast majority of “hits” are above the Y = X diagonal establishing inter-organelle visual 

anomaly detection as a sensitive readout for screening.  
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Discussion and outlook 

High-content image-based phenotypic screening is a critical step in basic science, translational 

science, and drug discovery, as a first, cheap, and fast assay to identify treatments that alter the 

cells’ morphological state. Current approaches to measuring how a perturbation altered the cells’ 

morphology are based on statistically evaluating the deviation from the baseline control 

population. These approaches hold the implicit assumption of independence between the 

morphological features extracted to represent the cell’s state. Here, I suggested anomaly detection 

as an approach that takes into account the interdependence between features. Anomaly detection 

is especially suitable for screening with many replicates of control experiments to statistically 

define reliable baseline patterns, and many perturbations, each with a few replicates that are 

assessed with respect to their deviation from the baseline. I assessed this new concept in three 

modes, focusing on tabular/vector representations of single cells (organelle, inter-organelle), and 

image-based inter-organelle.  

Anomaly detection was found to be more sensitive amplified existing hits and identified new hits 

that were not identified by direct measurement of the deviation from the baseline distribution. 

However, hits identified by anomaly detection were less reproducible compared to the common 

statistical approach. I detected that, when focusing on the hits’ replicates, they all show high 

deviation from the baseline control distribution, leading to high sensitivity. On the other hand, 

there is high variability between the replicates which leads to a low correlation and thus low 

reproducibility (Fig. 7). This variability is rooted in the fact that the autoencoder did not see the 

anomalous hits during training and thus contains some noise in inference time. This can be 

addressed by adding more generalization techniques to the training phase to make the model more 

stable, which is left for future work as the ability to reproduce the signals across replicates is vital 

for the readout reliability [56]. Applying regularization techniques to models can improve their 

performance and generalization ability. Adding l1 or l2 regularization can prevent overfitting on 

the control data by encouraging smaller weights, while adding dropout layers to the model can 

prevent overreliance on any one feature. Another way to reduce that noise would be by introducing 

perturbated data into the training phase, this will make the model more robust to anomalous hits 

during inference time. 

High-content image-based phenotypic profiling has multiple applications beyond screening. One 

application is clustering compounds into functional pathways by identifying similarities between 

the compounds’ phenotypic effects [46-47]. Anomaly detection may improve clustering as it is a 

more sensitive readout that, in turn, will lead to more strictly differentiated clusters. Another use 

case is identifying phenotype signatures of specific diseases or drug mechanisms of action [16, 46, 

48], where anomaly detection can also improve the readout. In this case, anomaly detection can 

create a more accurate profile as it is more sensitive to the compounds’ effect. In both cases, inter-

organelle readouts can provide complementary information regarding the phenotypic effect that is 

currently not measured.  
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Indeed, the most promising application of anomaly detection is the attempt to measure the 

deviation in interrelationships between the organelles. The inter-organelle organization is vital to 

the cell’s functionality and has implications in diseases like cancer, neurodegenerative disorders, 

and diabetes [4-8]. Therefore, a readout based on this organization may detect meaningful insights 

on perturbation effects that harm/correct those relations. Although the feature-based anomaly 

outperformed the common statistical approach, it failed to capture the relationship between the 

organelles from the single-cell extracted morphological features. The main reason for that is the 

high correlations between the different channels (Fig. 6A). These correlations led to the inter-

organelle model being similar to the organelle model, which in turn led to similar performance 

(Fig. 6C-E). Another reason is that these organelle statistical features lack the spatial context that 

is critical for measuring spatial dependencies between organelles. My preliminary results on 

image-based inter-organelle anomalies (Fig. 8) hold great promise for future advances. 
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Methods 

Dataset 

I used the open dataset by Bray et al [10]. This dataset contains Cell Painting data of cells under 

treatment with 30,000 small-molecule compounds. The dataset is composed of 406 different plates. 

Each plate has approximately 64 control wells and 320 uniquely treated wells. Most of the 

treatments have several repetitions over different plates. The repetitions are used to measure the 

reproducibility of my approach. Each image contains five fluorescent channels representing 

different cell structures: (1) Nucleus (DNA), (2) Endoplasmic reticulum (ER), (3) Nucleoli, 

cytoplasmic RNA (RNA), (4) F-actin cytoskeleton, Golgi, plasma membrane (AGP) and (5) 

Mitochondria (Mito). Each image was of size 696x520 pixels. The dataset contains raw image data 

and single-cell morphological features extracted by the Cell Profiler. The morphological profile 

contains 86 features extracted from each fluorescent channel (except DNA which is composed of 

70 features).  

Data split approach 

Each experimental plate has multiple control and treated wells. The control wells were used both 

for training the autoencoders and for accounting for inter-plate batch effects for hits identification 

during inference. For training, I used control wells to learn the baseline distribution of the control’s 

data. For hits identification, I used control wells to account for the inter-plate batch effects. Thus, 

I split each plate into four subpopulations: (1) 12 control wells for training, (2) 4 control wells for 

validation, (3) 48 control wells for hits identification at inference, and (4) treated wells for 

evaluation at inference. Control wells for training and validation were sampled randomly from all 

well locations in the plate. 

Morphological features analysis 

The morphological features, extracted by the CellProfiler, are single-cell features that encompass 

a diverse range of statistics of cellular shape and adjacency, as well as statistics on intensity and 

texture that are calculated in each channel [10]. Based on these features, the analysis was 

conducted at the single-cell level. 

Feature Selection and normalization 

Pycytominer’s [58] high correlation and low variance, both with the default parameters, were used 

for feature selection. High correlation: dropping features that are correlated with other features 

with a coefficient greater than 0.9. Low variance: dropping features that exhibit the same value for 

95% of the cells. This feature selection was analyzed on the training subset and at the end, the 

number of features attributed for each fluorescent channel dropped from 86 (70 for DNA) to 

approximately 32 features. Feature-wise normalization was used using Z-score normalization 
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before introducing the autoencoders. The mean and standard deviation were estimated from the 

control wells used for training. 

Autoencoder architecture 

The autoencoders’ architecture was derived from input and output sizes. The decoder and the 

encoder were symmetric. Each subsequent encoder/decoder layer was smaller/larger than the 

previous layer by a factor of 2 until reaching the latent encoding size of 8. The latent size was 

selected as the smallest size that succeeded to converge, validation loss < 1. For example, for input 

and output sizes of 32 and latent size of 8, the resulting architecture will contain five layers of size 

32-16-8-16-32. Each layer contains a Relu activation layer except the final layer. The loss function 

of the network is the mean square error between the reconstructed output and the corresponding 

real target. Each autoencoder was trained until convergence or a maximum of 30 epochs. 

Convergence was defined as validation loss change < 0.002 for four epochs. The batch size was 

2048 cells and the learning rate was 1.5e-3. 

Feature-based treatments evaluation 

I used the trained autoencoders and calculated the feature-wise prediction squared error for each 

cell. I used the prediction error for anomaly detection assessment compared to the direct 

assessment of feature deviation from the control. I pooled all cells in each well and used the 

average prediction error / features deviation as the well’s phenotypic profile, and z-score 

normalized these profiles using the plate’s control wells. These steps resulted in a vector of feature 

Z-scores for each cell.  

Note that in anomaly detection, a negative Z-score implies lower reconstruction errors, i.e., closer 

to the baseline distribution. Therefore, to enable fair comparison with feature deviation (where 

negative z-scores imply a phenotype), I took the absolute Z-score values for each feature when 

measuring the phenotypic alteration’s magnitude.  

Measuring the magnitude of phenotypic alteration 

The well’s ‘Signature Strength’ score is the fraction of features above a predefined threshold, 

defining the magnitude of a phenotypic alteration that was induced by treatment, with respect to 

the control [59]. For treatment with multiple replicates, we first multiply the treatment’s entries by 

the square root of the number of replicates and then calculate the average of the corresponding 

wells’ signature strengths [59].  

Measuring reproducibility 

I used a metric called ‘Percent Replicating’ [16]. For each treatment, I calculate a bootstrapping 

statistical test rejecting the null hypothesis that the median pairwise correlation between replicates 

is within the distribution of pairwise correlations of different treatments. Statistical significance 

was calculated as follows. For each treatment x with n replicates, I created a null distribution of 
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1000 x n wells, where each of the n wells was a unique treatment (and not x). The median pairwise 

correlation between the n wells’ feature vectors was calculated, and their distribution was 

evaluated concerning the median pairwise correlation of x’s n replicates. The p-value of treatment 

x was determined based on the fraction of the null distribution that had higher median pairwise 

correlations. The ‘Percent Replicating’ measurement was the proportion of treatments with a p-

value < 0.05. 

Images analysis 

Training an image-based baseline model  

As a baseline model, I used the U-Net architecture [55]. The model received as input an image 

patch of size 232x260 pixels, with a batch size of 16 image patches and a learning rate of 1.5e-4. 

The convergence criteria were the ones used in the tabular autoencoder described earlier. During 

each epoch of the model, a random crop of the image is generated. Each crop is normalized 

channel-wise using Z-score normalizations. 

Image-base treatments evaluation 

I used the trained models to predict the treated and control images that were reserved for hit 

identification. I calculated the pixel-wise mean squared error for each image’s crop prediction, 

between the original image’s region and the predicted one. For each image, I took enough crops 

to cover the entire image, then the average error is taken as the cumulative image reconstruction 

error. Each treated well is captured by several images, thus I took the average of their 

reconstruction errors. The resulting value was then utilized to determine the Z-score of the treated 

well in question, using the control wells of the same plate as the baseline for normalization. This 

results in a single Z-score for each treated well, indicating deviation from the baseline population. 
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Supplementary Figures 

Supplementary Figure 1. Concatenate organelles anomaly detection is a sensitive readout that finds 

complementary hits to the statistical readout. (A) The distribution of the signature strength with different signature 

thresholds (X-axis) for the organelle anomaly detection (blue) and statistical (orange) readouts. From left to right, 

each plot shows the distribution for all compounds, top 5%, and top 1% hits. (B) Each plot depicts the difference in 

signature strength between the organelle anomaly readout and the statistical readout (Y-axis) for each channel. The 

difference is computed across different thresholds that are used to compute the signature strength (X-axis). Each point 

is the mean difference across all the treatments. ‘All’ is the combined effect for all features across five organelles. (C) 

Each plot shows the fraction of ‘hits’ that are uniquely classified by each readout (Y-axis). In blue - organelle anomaly 

detection, In orange - statistical readout, and In green - both readouts identified those treatments. From left to right, 
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each plot uses a different signature threshold for signature strengths, 2, 4, and 6. The “hits” are identified as treatments 

that cross a particular “hit threshold” (X-axis). 
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 תקציר

סינון תרכובות מבוסס תמונה בתפוקה גבוהה הוא כלי רב עוצמה לזיהוי הבדלים פנוטיפיים באוכלוסיות התאים. בעבודת 

בעת סינון התרכובות.  הגמר שלי, אני מציע להשתמש בגילוי אנומליות כמדד חדש לזיהוי רגיש של שינויים פנוטיפיים

גילוי אנומליות, שמטרתו לזהות תצפיות חריגות החורגות מהתפלגות הבסיס, מתאים במיוחד לסינון תרכובות מכיוון 

שחזרות רבות של ניסויי בקרה מגדירות את התפלגות הבסיס, ומעט חזרות של טיפולים רבים הן חריגות פוטנציאליות 

אימנתי מודלים, מסוג מקודד אוטומטי, לשחזר את הפרופילים הפנוטיפיים של תאי  מהתפלגות בסיס זו. באופן ספציפי,

הבקרה והשתמשתי בשגיאת השחזור כמדידה לזיהוי חריגות. יישמתי את רעיון זה בשלושה מצבים: אנומליה מבוססת 

תמונה. התוצאות  תכונה של אברונים, אנומליה בקשרי האברונים מבוססת תכונה ואנומליה בקשרי האברונים מבוססת

שלי מצביעות על כך שאנומליות מבוססות תכונה הן רגישות ומשלימות יותר, אך מעט פחות ניתנות לשחזור, בהשוואה 

לגישה הסטטיסטית הנפוצה. התוצאות הראשוניות שלי עם אנומליה מבוססת תמונה מצביעות על הפוטנציאל לחשוף 

 נוספות כדי לאמת תוצאות אלו. תלות מרחבית בין האברונים. יש צורך בבדיקות
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