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Abstract

High content time-lapse embryo imaging assessed by machine learning is revolutionizing the

field of in vitro fertilization (IVF) transfers. However, the vast majority of IVF embryos are not

transferred to the uterus, and these masses of embryos with unknown implantation outcomes are

ignored in current efforts that aim to predict implantation. Here, we explore whether, and to what

extent the information encoded within “sibling” embryos from the same IVF cohort contribute to

the performance of machine learning-based implantation prediction. First, we show that the

implantation outcome is correlated with attributes derived from the siblings cohort. Second, we

demonstrate that this unlabeled data boosts implantation prediction performance. Third, we

characterize the siblings cohort properties driving embryo prediction, especially those that

rescued erroneous predictions. Our results suggest that predictive models for embryo

implantation can benefit from the overlooked, widely available unlabeled data of sibling

embryos by reducing inherent noise of the individual transferred embryo.
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Terminology

Term Definition

IVF In vitro fertilization (IVF) is the joining of a woman's egg and a
man's sperm in a laboratory dish.

Oocyte A female egg cell involved in reproduction.

Oocyte retrieval A procedure in which mature eggs are collected from the
female’s ovaries.

Cohort Oocytes retrieved in the same IVF cycle.

AUC Area Under the Curve. A way to measure a classification model’s
performance.

Blastocyst A structure formed in the early development of an embryo. In
humans, blastocyst formation begins about 5 days after
fertilization.

Morula An early-stage embryo consisting of 16 cells. In humans, the
morula stage begins about 3-4 days after fertilization.

Blastula A hollow sphere of cells surrounding an inner fluid-filled cavity.

Cleavage Division of cells in the early embryo, following fertilization.
Cleavage ends with the formation of the blastula.

Blastulation Hollow sphere of cells, that produces the blastula.

Embryo culture Embryo culture is the sterile isolation and growth of an immature
or mature embryo in vitro.

Embryo transfer The process of returning an embryo back into the uterus with the
intention of achieving a successful pregnancy.

CNN Convolutional neural network. A class of artificial neural
networks, most applied to analyze visual imagery.
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Time-lapse
microscopy system
(TLS)

A system that can take digital images of embryos at frequent time
intervals.

EmbryoScope A time-lapse incubator that has a built-in camera and microscope.
It captures images of the developing embryos every 10-15
minutes and creates a time-lapse video of embryo development.

Fertilization A sperm fusing with an egg cell.

Hidden layers Layers in between input layers and output layers.

Auto-encoder A type of artificial neural network used to learn a lower

dimensional representation (encoding) for a higher dimensional

data, typically for dimensionality reduction.

Implantation Implantation is when a fertilized egg, or blastocyst, is attached to
the lining of the uterine wall. It marks the beginning of
pregnancy.

Inner cell mass -
ICM

The mass of cells inside the embryo that will eventually give rise
to the definitive structures of the fetus.

Trophectoderm A layer of cells on the outer edge of a blastocyst which develop
into a large part of the placenta. These cells provide nutrients for
the developing embryo.

Morphokinetics Time specific morphological changes during embryo
development. Provide dynamic information on a fertilized egg.

Oocyte age Age of the female from which the oocytes were retrieved.

Zygote Fertilized egg cell that results from the union of a female egg
with a male sperm. The zygote stage is brief and is followed by
cleavage, when the single cell becomes subdivided into smaller
cells.

Pronuclei A pronuclei is a structure representing the sperm and egg cell
DNA during the process of fertilization. The sperm cell becomes
a pronucleus after the sperm enters the ovum, but before the
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genetic material of the sperm and egg fuse. The appearance of
two pronuclei is usually observed 16-18 hours after fertilization..

Random forest An ensemble learning method for classification,
regression and other tasks that operate by constructing multiple
decision trees.

XGBoost XGBoost is a decision-tree-based ensemble Machine Learning
algorithm that uses a gradient boosting framework.

ANN Artificial neural networks. An ANN is based on a collection of
connected units or nodes called artificial neurons.

10



List of Figures

Figure 1: Examples of blastocyst grading. 15

Figure 2: Sibling embryos from the same cohort are more similar than non-siblings

in terms of their differences in time intervals or normalized distance between

consecutive morphokinetic events. 24

Figure 3: Siblings in positive cohorts are of higher morphological quality than those

in negative cohorts. 26

Figure 4: Implantation prediction performance (AUC) comparison of different model

pairs with versus without siblings’ features.                                                                                  28

Figure 5: Model explainability analysis. 31

Figure 6: Analysis of cohort properties that “rescued” erroneous prediction using a

model trained with morphology, morphokinetics and oocyte age without and with

cohort features. 33

Figure S1: Sibling embryos from the same cohort are more similar than non-siblings

in terms of their differences in time intervals or normalized distance between

fertilization and each morphokinetic event. 52

Figure S2: Analysis of cohort properties that “rescued” erroneous prediction using

a model trained with deep convolutional neural network, morphology,

morphokinetics and oocyte age without and with cohort features.                                                53

Figure S3: Distribution of oocyte age for all treatments. 54

Figure S5: Oocyte segmentation pipeline. 54

11



Introduction

Phenotypic variation is inherent in every biological system. A phenotype is determined by a

combination of genetic and environmental factors. For example, the proportion of shared genetic

background between human siblings can explain most of the variability in height [ 1], while

environmental factors can affect gut microbiota composition [ 2], gene expression and disease

susceptibility [ 3], and even lead to phenotypic variation in monozygotic (aka "identical") twins

[ 4]. Thus, confinement of the genetic and environmental variability, for example, by considering

siblings raised under similar conditions, can lead to reduced phenotypic variability, i.e., increased

phenotypic similarity. We hypothesized that such phenotypic correlations can provide predictive

value regarding an individual’s future phenotypic state by considering the phenotypic states of its

siblings.

Specifically, during in vitro fertilization (IVF) a cohort of “sibling” oocytes, all sharing the same

“parents'' within the same IVF treatment, are fertilized and incubated for up to six days under the

same laboratory conditions before one or a few embryos from the cohort are selected for transfer

into the uterus. IVF embryo phenotypes are heavily affected by genetic [ 5] and environmental [ 6]

factors, and thus the genetic and environmental variability is minimized for siblings from the

same cohort.

Recent advances in time-lapse video microscopy for live embryo imaging has transformed IVF

into a data-intensive field. This has led to innovative attempts to automatically and unbiasedly

estimate the implantation potential of embryos based on algorithmic assessment of their visual

phenotypes and/or developmental trajectory [ 7, 8, 9, 10, 11, 12]. Specifically, supervised machine

learning has emerged as a powerful approach where features, computationally extracted from

embryo images with known implantation outcomes, are used to train computational models to

predict implantation [ 13, 14, 15, 16]. These models reach performance comparable and even

exceeding those of embryologists [ 17, 18, 19].

However, from the available cohort, only one or at most two embryos are selected for transfer to

the uterus. This poses a major limitation for machine learning-based embryo selection

approaches because the implantation potential of the majority of deselected embryos remains

unknown [ 16]. Thus, the number of embryos with known implantation outcomes available for

training is severely limited. Recent studies have attempted to overcome this limitation by
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including “unlabeled” embryos in their model training schemes, specifically focusing on the

subgroup of embryos found unsuitable for transfer to the uterus due to their poor morphological

appearance and presumed limited implantation potential [ 20 ,21]. Other studies used the

morphological annotations of embryos found unsuitable for transfer to the uterus to train models

to predict the value of these morphological measurements as a readout for successful

implantation potential [ 22, 23]. However, none of these studies fully capitalized on and

systematically assessed the potential of using the association between “sibling” embryos from

the same cohort to enhance implantation prediction accuracy.

We asked whether we can take advantage of cohort-derived information to train a machine

learning model tasked with predicting implantation? We hypothesized that cohort embryos share

information relevant for implantation prediction. Thus, using the full extent of the available

unlabeled data in the cohort may provide further statistical discriminative power. Indeed, a few

earlier studies provide evidence supporting the notion that cohort siblings encapsulate

information that correlate with the transferred embryo’s quality and implantation outcome, such

as cohort size [ 24, 25, 26, 27], sibling blastocyst development [ 28, 29], or a combination of

cohort-specific variables [ 26]. Here, we explicitly assess the contribution of sibling information

to embryo implantation prediction by systematically evaluating different models trained with or

without information from the cohort. We demonstrate that the unlabeled cohort embryos

contribute to the prediction. Our results imply that artificial intelligence (AI)-based embryo

assessment can benefit from the widely available, and currently ignored, correlated data in the

cohort’s siblings. We characterize the specific properties of the cohort that contribute to the

prediction and show that different cohort features can be exploited to enhance performance of

different models in varying contexts. Altogether, we suggest that considering the correlated

properties of sibling embryos aid in canceling the inherently noisy single embryo prediction.
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Previous Work

Clinical background

EmbryoScope

Embryos images were acquired using the EmbryoScope® time-lapse system. EmbryoScope is an

incubator that allows embryologists to observe the embryos development in vitro while

mimicking the uterus’s physiological conditions. It has a built-in camera that takes pictures of the

embryos at fixed time intervals. Those pictures are then combined to a continuous video stream

of the embryo development, enabling to determine and systematically characterize the exact

times of important embryo developmental stages.

The blastocyst

The term blastocyst refers to a development stage that a human embryo reaches at day 5 or 6

after fertilization. It is a structure formed of hollow cells surrounding a mass of cells known as

the inner cell mass (ICM) (Fig. 1). Studies have shown implantation rate is higher in blastocysts

transfer compared to early-stage embryos [30,31,32]. Blastocyst transfer also enables better

selection of the best quality embryo from a cohort, providing more confidence compared to the

high early uncertainty in earlier developmental stages, thus reducing the need to transfer multiple

embryos to achieve pregnancy, and avoiding multiple gestations. The need for morphological

assessment of blastocysts for transfer contributed to the development of blastocysts scoring

systems. The most popular grading system adopted by most IVF laboratories is the grading

system introduced by Gardner and Schoolcraft in 1999 [8,33]. Morphological embryo

assessments in this thesis were also based on this system.

According to this method the embryo is classified based on three separate quality scores:

i)         Stage of blastocyst development, expansion and hatching, ranking from 1-6, 1

being the embryo that hasn't reached the blastocyst stage yet and 6 the

blastocyst hatched out of its shell.
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ii) Inner cell mass (ICM) quality, size and compactness, ranking from A to D, D

being very few cells and A the embryo has many cells and is slightly packed.

iii) Quality, cohesiveness and number of trophectoderm (TE), ranking from A to

D, D being very few large cells and A the embryo has many cells and forming

a cohesive layer

Examples of blastocysts graded according to the Gardner & Schoolcraft grading system are

shown in Fig. 1.

Figure 1. Examples of blastocyst grading. Blastocysts were scored and graded according to the Gardner
and Schoolcraft standard [8]. Blastocysts are given scores when the expansion grade is listed first, the
inner cell mass grade listed second and the trophectoderm grade third. The Gardner grading system
assigns three quality measures to each blastocyst embryo: 1. Blastocyst development, expansion, and
hatching stage. 2. Inner cell mass (ICM) quality. 3. Trophectoderm (TE) quality.
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Icm grade Inner cell mass quality

A Many cells, tightly packed

B Several cells, loosely grouped

C Very few cells

D Degenerative

Table 1: ICM score, Gardner and Schoolcraft, 1999 [8]. ICM cells are the cells located inside the

blastocoel, often forming a cell clump at one pole of the blastocyst.

Trophectoderm grade Trophectoderm quality

A Many cells, forming a cohesive layer

B Few cells, forming a loose epithelium

C Very few large cells

D Degenerative

Table 2: Trophectoderm score, Gardner and Schoolcraft, 1999 [8]. Trophectoderm cells are the outer cells

of the blastocyst, forming the blastocyst structure itself.

Expansion degree Development and expansion stage

BT-early blastocyst Blastocoel cavity more than half the volume of
the embryo

BC -full blastocyst Full blastocyst, cavity completely filling the
embryo
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BE-expanded blastocyst Expanded blastocyst, cavity larger than the
embryo, with
thinning of the

Bhi-hatching blastocyst Hatching out of the shell

BH-hatched blastocyst Hatched out of the shell

Table 3: Development and expansion stage, Gardner and Schoolcraft, 1999 [8].

Related work

IVF procedure overview

In vitro fertilization (IVF) is a procedure used for infertility treatment, gestational surrogacy or

for preventing genetic problems. This process involves retrieving eggs from a woman’s ovaries

and fertilizing them with sperm. The fertilized egg, the zygote, is then monitored for 2–6 days in

an in vitro laboratory culture environment. After 3-6 days it is transferred back into the uterus,

with the intention of achieving a successful pregnancy. Usually, IVF embryos are maintained in

vitro until cleavage stage (day 3 after fertilization) or blastocyst stage (day 5 or 6 after

fertilization).

Although IVF is the most effective method of assisted reproductive technology, only one-third of

all IVF cycles result in a pregnancy [34]. Besides the fact that it may take more than one cycle

for a successful pregnancy, it is also an expensive and a highly emotive and stressful experience

for patients. All those reasons emphasize the need for an improved and accurate embryo

selection process. The number of embryos to be transferred is determined by the patient age,

quality of the embryos and other diagnostic factors. Transferring more than one embryo may

result in a multiple gestation (multiple pregnancy). Multiple gestation is associated with maternal

and embryo complications, especially preterm delivery that increases risk of significant neonatal

morbidity and mortality [35,36]. Today, most clinics try to minimize the number of transferred

embryos to avoid it.
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  Embryo selection

Embryo selection made by human embryologists can suffer from human bias in critical decisions

that would affect the success of the IVF cycle. The subjectivity involved in the embryos

evaluation process, leads to results that vary across clinics and embryologists. AI methods are

used more frequently in recent years for improving human embryo selection and assessing the

probability of an embryo to be implanted back in the uterus in in-vitro fertilization treatments

[34]. These are based on two sets of visual embryo features: morphology, the visual appearance

of an embryo, and morphokinetics, the timing of a key embryo developmental stage.

Morphology-based AI for embryo selection

Uyar et al. (2015) [17] used the Naïve Bayes classifier for predicting embryos implantation

probabilities using morphological features, patient demographics and treatment characteristics,

as infertility factor and treatment protocol. They used an information gain feature weighting

approach for reducing the number of features. The model results were compared with the

predictions of five embryologists' majority decision regarding the implantation outcome. The

model outperformed the expert’s judgment in terms of accuracy and false alarm rate. Hassan et

al. (2020) [37] assessed the implantation prediction of five different machine learning models:

Multilayer Perceptron (MLP), Support Vector Machines (SVM), C4.5, Classification and

Regression Trees (CART) and Random Forest (RF). According to their experiments, SVM

attained the highest accuracy.

Another study [38] compared the performance of five different models: Support vector machines

(SVM), recursive partitioning (RPART), random forest (RF), Adaptive boosting (Adaboost), and

1NN and found that in this case SVM also outperformed the other models. Guh et al. (2011) [39]

used Genetic Algorithms to choose the optimal subset of clinical attributes and the corresponding

hyper-parameters for a decision tree model that predicts IVF cycle outcome.

Blank et al. (2019) [27] compared both random forest and multivariate logistic regression models

to predict implantation of a day 5 blastocyst. They used embryos morphologic characteristics and
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patients characteristics for this purpose. Random forest achieved a much better AUC score

compared to the multivariate logistic regression model.

Morphokinetic-based AI for embryo selection

The recent development of the EmbryoScope has led to prediction methods based on

morphokinetic parameters shown to significantly increase ongoing pregnancy and implantation

rates [7,40]. Specifically, the timing of blastulation has been shown to be an important predictor

for implantation [33,41,42]. Increased time intervals were also positively associated with poor

embryo quality, reduced blastomere number and increased fragmentation [10]. Morphokinetic

events are usually referred to as tN, which is the time of cell division to the N-cell stage. Wu et

al. (2016) [43] characterized morphokinetic parameters of transferred cleavage embryos based on

their implantation outcome. Results showed that tPNf (the time when both pronuclei disappear),

t2 and t4 occurred at an earlier stage in embryos with successful implantation. In addition, the

time interval between t3 and t4 was significantly shorter for successfully implanted embryos.

Meseguer et al. (2011) [7] examined transferred cleavage for the purpose of identifying the most

promising variables characterizing implanted embryos. They reported that t5, t3-t2 and t4-t3

were the most predictive parameters. t2, t3, t4, t5 and t3-t2 were normally distributed for

implanted embryos, as opposed to non-implanted embryos. They have divided the embryos into

subcategories twice: the first was based on morphology and the second was based on

morphokinetic. Even though in both divisions the best subcategory had also the highest

implantation rate, the morphokinetic’s best subcategory had higher implantation rate than the

best morphologic one.

Deep learning based AI for embryo selection

Artificial Neural Networks (ANN) were trained with both morphokinetic and morphological

parameters to predict live birth and implantation potential [44,45]. Durairaj and Thamilselvan

(2013) [24] used ANN for implantation prediction with parameters based on the women’s

19



physiology and treatments history, such as number of oocytes retrieved, number of embryos

transferred and previous history of miscarriages.

The development of the EmbryoScope has enabled the evolution of image processing techniques

on time-lapse imaging for embryo selection and assessment. Tran et al. (2019) [16] studied the

use of IVY, a deep-learning model that can analyze whole time-lapse videos instead of specific

images of blastocysts, to predict implantation probability. They trained the model to discriminate

between successfully implanted embryos versus embryos which failed to implant or have been

discarded. Bormann et al. (2020) [46] have investigated the use of a CNN pre-trained with

ImageNet images and used transfer learning for blastocysts single time-point images. In the first

stage, they classified embryos into categories based on the Gardner grading system using a

pre-trained network [47] and a genetic algorithm. Another recently developed framework is

UBar, a predictive model for embryos implantation potential [18]. UBar uses a CNN

auto-encoder to derive a 968-dimensional latent vector of developing embryos in a sequence of

time-lapse frames. A LSTM network was then provided with the embeddings data. The network

was trained on 4087 embryos, which had a known embryologist’s grade, but not all of them had

a known implantation outcome. Then, the network was used to predict implantation of 272

embryos. Results showed UBar has outperformed a panel of five embryologist’s decisions.

Khosravi et al. (2019) [19] implemented STORK, a robust framework containing a DNN

network and transfer learning architecture which was trained on a large dataset embryos

time-lapse image, for predicting blastocyst quality and selecting the best embryo for transfer.

They classified 10,148 embryos into three quality groups: poor, fair, and good. STORK was

evaluated on 1930 images of 283 embryos. Although it was not designed to predict implantation,

it could detect embryo quality based on morphological classification and associate it with

pregnancy rate. STORK outperformed a majority voting procedure of 5 embryologists in terms

of predicting implantation, thus providing evidence for the potential superiority of the machine

prediction over the human embryologist in this task.
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Semi-supervised learning

When unlabeled data is used with a small amount of labeled data, it can produce considerable

improvement in models’ performance. This approach is called semi-supervised learning, and it

exploits the advantages of both unsupervised and supervised learning while avoiding the

challenges of finding a large amount of labeled data. An example of when semi-supervised

learning can be used successfully is in the building of a text document classifier [64,65].

Semi-supervised learning is ideal in this case because it is nearly impossible to find a large

amount of labeled text documents. Our work is an example of utilizing semi-supervised learning,

where a small fraction of labeled (transferred embryos) and vast unlabeled observations

(non-transferred cohort siblings) are used together to construct better learning procedures. In our

case, the unlabelled data from the siblings is useful because it carries information useful for the

transferred enbryo’s label prediction that is not contained in the labeled data alone.

Contribution of sibling information to embryo implantation prediction

Previous work has shown that cohort data contain information helpful for assessing the embryo's

quality and evaluating its implantation competence. A few earlier studies showed that cohort size

is correlated with implantation outcome [ 24, 26, 27]. Devreker et al. (1999)  [25] discovered that a

large embryo cohort size was the most predictive parameter for having at least one good quality

embryo in the cycle, independent of oocyte age.

Researchers have tested if having a blastocyst sibling in the treatment affects the probability of

an embryo to be implanted and results in a live birth. Fisch et al. (1999) [28] discovered that

having at least one blastocyst in the cohort resulted in a higher number of oocytes retrieved,

higher blastocyst embryos rate in the treatment and increased clinical pregnancy rates. Mackenna

et al. (2013) [29] have also shown that having a blastocyst sibling is a prognostic factor for

implantation. They examined patients who had embryos transferred back to the uterus at day 3

and had remaining siblings’ embryos in culture. They evaluated the remaining cultured embryos

at day 5 and divided the patients into two groups: patients with at least one blastocyst embryo

and patients with no blastocyst embryos. The first group had significantly higher clinical

pregnancy rate per cycle, live birth rate and implantation rate. No differences were observed in
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multiple pregnancy rates and miscarriage rates between both groups. Jun et al. (2008) [26]

claimed that four cohort parameters were remarkably more informative than any measures of

individual transferred embryos in predicting an IVF cycle outcome: cohort size, number of 8-cell

embryos, percentage of cleavage arrest in the cohort, and day 3 FSH (Follicle-Stimulating

Hormone) level. They used Sequential Multiple Additive Regression Tree (MART) and

Classification and Regression Tree (CART) models trained only with those four cohort features

and reported results of 70% accuracy in predicting implantation outcome. Furthermore, they

showed that most prognostic information carried by conventional parameters such as oocyte age

and clinical diagnoses, is captured by three of the four parameters. However, they did not

analyze siblings’ information on day-5 stage, but only on day-3.

In my thesis I show that extracting information from siblings in the same cohort cycle of the

transferred embryo can improve AI-based implantation prediction. Our work is different from

previous studies because we evaluate the contribution of the cohort information to implantation

prediction directly by training different models with and without cohort data. For each trained

model, we examine the most contributed parameters and show that different cohort properties are

exploited in different models. We also demonstrate that siblings are more phenotypically similar

than non-sibling embryos, which none of the previous studies has researched. In addition, most

of the previous studies which examined cohort properties assessed day 3 embryos. Since the

uncertainty of the implantation prediction is higher at this stage of development [30,31],

additional information from the siblings are expected to contribute to the implantation prediction.

We are only evaluating embryos at the blastocyst stage, when the uncertainty of the implantation

prediction is lower than in day 3, but we still manage to show that cohort information contributes

discriminative signals beyond the transferred embryo properties. We also examine which

embryos were correctly classified only by the classifier that had access to cohort information and

what are their characteristics, an analysis that none of the previous studies has been conducted.
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Results

Embryos from the same cohort are phenotypically correlated

Our data included information derived from 2089 transferred embryos collected from 1605 IVF

cycles that included 1176 implanted blastocysts (positive embryos), 913 non-implanted

blastocysts (negative embryos), and 14105 sibling embryos that were not transferred (Methods,

Table S1). The timing of 7 hallmark stages in embryo development, termed morphokinetic

events, were manually annotated based on time-lapse observation of the developing embryos

(Fig. 2A, Table S1, Methods). These morphokinetic events are considered key in proper embryo

development and were shown to be correlated with implantation potential [ 10,48]. The timing of

morphokinetic events from fertilization and the time intervals between consecutive

morphokinetic events were more similar among sibling embryos than for randomly selected

non-sibling embryos, indicating lower intra-cohort variability (Fig. S1A-F - timing of

morphokinetic events, Fig. 2B-F - time intervals between consecutive morphokinetic events, Fig.

2G - normalized distances between multivariate representations of all time intervals between

consecutive morphokinetic events, Fig. S1G - normalized distances between multivariate

representations of all morphokinetic events). To verify that this higher intra-cohort (i.e., between

siblings) similarity is not an artifact due to the random selection of embryos, we compared intra-

versus inter-cohort similarity in the morphokinetic profiles of embryos with similar

morphological qualities. We considered the manually annotated Gardner and Schoolcraft

alphanumeric quality scoring scheme [8] as a proxy for embryo morphological-based quality,

which is based on the assessment of three parameters: blastocyst expansion status, morphology

of the inner cell mass (ICM), and morphology of the trophectoderm (TE) [49,50] (Fig. 2H). We

considered all possible ordered combinations of triplets of embryos that include a pair of sibling

embryos from the same cohort and a third non-sibling embryo from a different cohort, where all

three embryos had the same Gardner scores (Fig. 2I, Methods). This analysis established that

morphokinetic multivariate profiles of sibling embryos are more similar than non-sibling

embryos and that this similarity is not a mere consequence of a morphologic similarity between

siblings at the blastocyst stage (Fig. 2J). Altogether, this data supports the notion that sibling

embryos share similar phenotypic properties.
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Figure 2. Sibling embryos from the same cohort are more similar than non-siblings in terms of their
morphokinetic properties. (A) Schematic sketch. Morphokinetic features: cell division to the 2, 3, 4 and
8-cell stage (t2, t3, t4, t8), the compaction of the morula - a day-3 development stage (tM) and the start of
blastulation (tSB) - a day-5 development stage. (B-G) Distribution of the difference in time intervals, in
minutes (B-F) or normalized distance (G), between consecutive morphokinetic events compared across
siblings versus not siblings embryo pairs. N embryos = 16194. N cohorts = 1605. N positive cohorts =
928, N negative cohorts = 677. (B) Mean (standard deviation) of distances between t3-t2 intervals was
174.03 (214.7) for sibling embryos versus 202.26 (218.7) for not-sibling embryos, Mann-Whitney-U
signed rank test p-value < 0.0001. (C) Mean (standard deviation) of distances between t4-t3 intervals was
146.48 (220.56) for sibling embryos versus 158.75 (225.52) for not-sibling embryos, Mann-Whitney-U
signed rank test p-value < 0.0001. (D) Mean (standard deviation) of distances between t8-t4 intervals was
594.58 (531.66) for sibling embryos versus 684.09 (569.68) for not-sibling embryos, Mann-Whitney-U
signed rank test p-value < 0.0001. (E) Mean (standard deviation) of distances between tM-t8 intervals
was 691.03 (546.57) for sibling embryos versus 815.16 (602.9) for not-sibling embryos,
Mann-Whitney-U signed rank test p-value < 0.0001. (F) Mean (standard deviation) of distances between
tSB-tM intervals was 344.50 (336.89) for sibling embryos versus 434.79 (372.23) for not-sibling
embryos, Mann-Whitney-U signed rank test p-value < 0.0001. (G) Mean (standard deviation) of
normalized distances between all morphokinetic features time intervals was 0.241 (0.14) for sibling
embryos versus 0.28 (0.15) for not-sibling embryos, Mann-Whitney-U signed rank test p-value < 0.0001.
(H) Predefined criteria of blastocyst quality according to the Gardner three-part scoring scheme. From left
to right: Blastocyst expansion – volume and degree of expansion of the blastocyst cavity (ranked 1-6).
Morphology of the Inner cell mass (ICM)– size and compaction of the mass of cells that eventually form
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the fetus (ranked A-D). Morphology of the trophectoderm (TE) – number and cohesiveness of the single
cell layer on the outer edge of the blastocyst that eventually forms the placenta (ranked A-D). (I)
Schematic sketch of the analysis comparing embryo triplets: two from the same cohort (annotated X1 and
X2), and two from a different cohort (X2 and Y1), where all embryos have the same Gardner annotations
(similar morphological quality). (J) Mean (standard deviation) of normalized distances between all
morphokinetic features time intervals was 0.224 (0.141) for sibling embryos with similar Gardner scores
versus 0.263 (0.146) for not-sibling embryos with similar Gardner scores, Mann-Whitney-U signed rank
test p-value < 0.0001. N = 1,654,732 ordered triplets.

Cohort properties correlate with implantation outcome

The phenotypic similarity between siblings from the same cohort raises the hypothesis that

morphological and morphokinetic properties of sibling embryos are correlated to the

implantation outcome. To test this hypothesis we compared the distribution of several

cohort-related properties for cohorts that included successfully implanted embryos (positive

cohorts) versus those cohorts where the transferred embryo/s failed to implant (negative

cohorts). First, we validated that positive cohorts contained more embryos than negative cohorts

(Fig. 3A), and that the fraction of sibling embryos within a cohort (not including the transferred

embryo/s) reaching blastulation was larger in positive cohorts (Fig. 3B). These results are in

agreement with previous reports for cohort size [ 24,25, 26, 27,38] and for siblings blastocyst

development [ 28 ,29]. Each of the three Gardner morphological scores was elevated for sibling

embryos, in positive cohorts compared to negative cohorts (Fig. 3C-E). While the enrichments of

higher quality cohort properties in positive cohorts were relatively small for each cohort

property, they were all consistent toward favoring higher quality cohort properties in positive

cohorts. Cumulatively, these results conclude that morphological properties of “sibling” embryos

within a cohort, that were not transferred, are associated with the implantation potential of the

embryo that was transferred within that cohort. These results establish that properties derived

from sibling embryos correlate with the clinical outcome of their sibling transferred embryo.
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Figure 3: Siblings in positive cohorts are of higher morphological quality than those in negative cohorts.
(A-B) Distribution of the cohort size (i.e., number of sibling embryos in a cohort) (A) or the fraction of
embryos within a cohort (not including the transferred embryo/s) to develop into a blastocyst (B)
compared across positive versus negative cohorts. N transferred blastocysts =2089. N implanted
blastocyst = 1176, N non-implanted blastocyst = 913. N cohorts = 1605. N positive cohorts = 928, N
negative cohorts = 677. (A) Mean (standard deviation) cohort size was 10.56 (3.19) for positive cohorts
versus 9.9 (3.36) for negative cohorts, Mann-Whitney-U signed rank test p-value < 0.0001. (B) Mean
(standard deviation) fraction of sibling embryos within a cohort (not including the transferred embryo/s)
reaching blastulation was 0.49 (0.22) for positive cohorts versus 0.41 (0.25) for negative cohorts,
Mann-Whitney-U signed rank test p-value < 0.0001. (C-E) Distribution of manually annotated Gardner
scores of cohort embryos (not including the transferred embryo/s) across positive versus negative cohorts.
N transferred blastocysts=1936 embryos. N implanted blastocysts = 1141, N non-implanted blastocysts =
795. (C) Expansion degree: BT- early blastocyst, BC - full blastocyst, BE- expanded blastocyst, Bhi
-hatching blastocyst, BH - hatched blastocyst. The total number of BH embryos in our dataset is 3 for
implanted blastocysts and 3 for non-implanted blastocysts, and thus cannot be seen in the graph.
Corresponding Mann- Whitney-U signed rank tests on the null hypothesis that the two schemes were
drawn from the same matched distribution p-value < 0.0001. (D) Inner cell mass (ICM): ranked from A
(high quality) to D (low quality). Corresponding Mann-Whitney-U signed rank tests on the null
hypothesis that the two schemes were drawn from the same matched distribution p-value < 0.0001. (E)
Trophectoderm (TE): A (high quality) to D (low quality). Corresponding Mann-Whitney-U signed rank
tests on the null hypothesis that the two schemes were drawn from the same matched distribution p-value
< 0.0001.
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Cohort properties contribute to implantation prediction

Given that cohort properties were correlated to the implantation outcome, we hypothesized that

inclusion of cohort-derived features can enhance the prediction power of a machine learning

model initially trained without cohort information (Fig. 4A). To assess the generality of this idea

we trained several distinct machine learning models for the prediction of implantation outcome,

each of these models was trained without and with cohort-derived features. The performance of

each pair of models, without or with cohort features, was compared to assess the contribution of

the cohort information. The first model was morphology-based, and trained on manually

annotated Gardner scores (Methods). The second model was morphokinetics-based [ 7], and

trained on manually annotated key morphokinetic events (Methods). The third model combined

morphology, morphokinetics and the oocyte age, where the latter is widely accepted as correlated

with implantation success [51,52] (Methods). Seventeen cohort-derived features were calculated

from the siblings of the transferred embryo at test. These included cohort size, fraction of sibling

embryos reaching blastulation, and features encoding the siblings’ Gardner scores (Methods).

The performance of each of these three models was improved by incorporating cohort-derived

features, as measured by receiver operating characteristic (ROC) area under the curve (AUC)

(Fig. 4B-D).

Next, we turned to evaluate a deep convolutional neural model that extracts information directly

from the raw embryo images. These “deep learning” models were shown to surpass more

traditional machine learning models in many domains, including IVF embryo implantation

prediction [ 13, 14, 15, 16]. Specifically, we used a pre-trained VGG16 network [53] and fine-tuned

it using preprocessed images of transferred blastocysts. Here too, we trained one model without

cohort features, and another with the network’s confidence score along with cohort features

(Methods). Similar to the previous models, inclusion of cohort features enhanced the model’s

capacity to accurately predict implantation outcome (Fig. 4E). Moreover, cohort information

enhanced the capacity to accurately predict implantation for a model that combined the deep

learning model score, morphology features and the oocyte age (Fig. 4F), as well as for a model

that also included morphokinetic features (Fig. 4G). Finally, we validated that these results were

consistent by performing 10-fold cross validation: 10 rounds of training and evaluation for each

model, each time with an independent partitioning of cohorts to train and test sets (Fig. 4H).
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These results, consistent across five models and multiple replicates, established that the siblings

of the cohort encapsulate valuable information regarding the implantation potential of the

transferred embryo.

Figure 4: Implantation prediction performance (AUC) comparison of different model pairs with versus
without sibling features establish that cohort properties contribute to implantation prediction. Statistical
evaluation was computed with Wilcoxon signed rank test rejecting the null hypothesis that both models’
predictions are drawn from the same distribution. (A) Illustration: do cohort siblings data contribute to
implantation prediction? (B) Morphology (Gardner scores). N=1936 embryos. N positive embryos =
1141, N negative embryos = 795. AUC: 0.6 versus 0.68, respectively, p-value < 0.0001. (C)
Morphokinetics. N=2089 embryos. N positive embryos = 1176, N negative embryos = 913. AUC: 0.591
and 0.641, respectively, p-value < 0.0001. (D) Morphokinetics, morphology and oocyte age: N=1936
embryos. N positive embryos = 1141, N negative embryos = 795. AUC: 0.662 versus 0.764, respectively,
p-value < 0.0001. (E-G) Deep convolutional neural network without (E) and with (F) morphology and
oocyte age, and with morphokinetics, morphology and oocyte age (G). N=772 embryos. N positive
embryos = 482, N negative embryos = 290 (E) AUC: 0.698 versus 0.744, respectively, p-value < 0.001.
(F) AUC: 0.72 versus 0.779, respectively, p-value < 0.001. (G) AUC: 0.727 versus 0.8, respectively,
p-value < 0.001. (H) Replication analysis. Performance assessment for models trained without versus
with cohort features in 10-folds cross validation. (i) Cohort features. AUC mean (standard deviation):
0.65 (0.02) (ii-iii) Morphology without (ii) or with (iii) cohort features. AUC mean (standard deviation)
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was 0.59 (0.02) without cohort versus 0.65 (0.02) with cohorts, Wilcoxon signed rank test p-value < 0.01.
(iv-v) Morphokinetics without (iv) or with (v) cohort features. ACU mean (standard deviation) was 0.57
(0.02) without cohort versus 0.62 (0.01) with cohort, Wilcoxon signed rank test p-value < 0.01.
Surprisingly, the model trained with morphokinetic and cohort features performed slightly worse than the
model trained with cohort features alone (i versus v) perhaps due to inclusion of morphological features
less correlative with the outcome without feature selection. (vi-vii) Morphokinetics, morphology and
oocyte age without (vi) or with (vii) cohort features. AUC mean (standard deviation) was 0.65 (0.02)
without cohort versus 0.74 (0.02) with cohort, Wilcoxon signed rank test p-value < 0.01. (viii-ix) Deep
convolutional neural network scores without (viii) or with (ix) cohort features. AUC mean (standard
deviation) 0.63 (0.03) without cohort versus 0.73 (0.02) with cohort, Wilcoxon signed rank test p-value <
0.01. (x-xi) Deep convolutional neural network scores with morphology and oocyte age without (x) or
with (xi) cohort features. AUC mean (standard deviation) was 0.71 (0.03) without cohort versus 0.75
(0.03) with cohort, Wilcoxon signed rank test p-value < 0.01. (xii-xiii) Deep convolutional neural network
scores with morphokinetics, morphology and oocyte age without (xii) or with (xiii) cohort features. AUC
mean (standard deviation) was 0.69 (0.03) without cohort versus 0.77 (0.02) with cohort, Wilcoxon
signed rank test p-value < 0.01.

Identifying cohort properties driving the model’s prediction

While cohort information was found to enhance implantation prediction, it was not clear which

of the cohort features contributed to the measured boost in performance. Thus, we next aimed

toward explaining the models’ decisions. We focused our efforts on the two top performing

models trained without or with the deep learning network's feature (i.e., confidence score),

namely, a model trained on morphology, morphokinetics and oocyte age. This enabled us,

beyond plain model interpretability, to assess what information was encapsulated in the network

beyond the morphology, morphokinetics and oocyte age.

To pinpoint what features were the most important for the model’s prediction we applied

SHapley Additive exPlanation (SHAP), a game theory-based method for interpreting models’

predictions that assigns each feature an importance value for a prediction [54]. For the model that

was trained solely with cohort features we found that the fraction of siblings reaching

blastulation and the cohort size were the two most important features for implantation prediction

(Fig. 5A). The trophectoderm score and expansion degree (morphology), oocyte age and seven

morphokinetic features were identified as the ten top features in a model trained with

morphokinetics, morphology and oocyte age (Fig. 5B). When comparing the ten top ranked

features with a model trained with cohort features, we noticed that the fraction of sibling

embryos reaching blastulation came up as the most important feature for prediction of

implantation outcome, preceding morphology, morphokinetic and oocyte age (Fig. 5C). Overall,
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five of the top ten important features were attributed to the cohort and the other five were

attributed to the transferred blastocyst (Fig. 5C). The network confidence score was the most

informative feature, by a margin, in a model trained with the network confidence score,

morphology (Gardner scores), morphokinetics and the oocyte age (Fig. 5D). Trophectoderm

score was ranked only third and the expansion degree was not ranked within the ten most

important features indicating that the network encoded the annotated morphology (Gardner

scores). Cohort features were ranked higher than the morphology and morphokinetic features in a

model that was trained with the network prediction, morphology, morphokinetics and the oocyte

age (Fig. 5E). Half of the top features (5/10) were cohort-related suggesting that the cohort

encodes information that is not included within the embryo’s image (Fig. 5E). While oocyte age

was identified as an important feature in the two models that did not include cohort features (Fig.

5B and Fig. 5D), it was not one of the top ten features when cohort features were included (Fig.

5C and Fig. 5E). This suggests that the cohort encodes information more discriminative than the

oocyte age in terms of implantation prediction. Altogether, these analyses show that cohort

features are an important source of information for the prediction of implantation outcome.
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Figure 5: Model explainability analysis. Each panel shows features importance for the top ten features for
a specific model using Shapely Additive Explanations (ShAP). Embryo features are marked in yellow and
cohort features are marked with green. (A) Only cohort features. (B-C) Morphokinetics, morphology and
oocyte age without (B) or with (C) cohort features. (D-E) Deep convolutional neural network predictions
with morphokinetics, morphology, oocyte age and without (D) or with (E) cohort features.

Identifying cohort properties that corrected erroneous prediction

Finally, we evaluated the contribution of the cohort features to the classification of each of the

transferred embryos. Fig. 6A shows the embryo classification scores by a model trained with

morphology, morphokinetics and oocyte age without (x-axis) and with (y-axis) cohort features.

Each data point corresponds to an embryo and the color code indicates positive (green) and

negative (red) embryos. Embryos above the y = x diagonal had higher classification scores when

including the cohort features, reflecting a higher prediction for successful implantation. Inclusion

of cohort features increased the classification scores of positive embryos (green data points

above the y = x diagonal) and decreased the classification scores of negative embryos (red data

points below the y = x diagonal), indicating that adding cohort features to the model improves

model’s discrimination for both positive and negative embryos (Fig. 6B). To better understand
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how cohort features enhanced implantation prediction we zoomed in to the embryos that were

“rescued” by the cohort features, i.e., correctly classified only by the classifier that had access to

cohort information. These included 15 negative and 62 positive “rescued” embryos. We

examined the two top ranked cohort features, fraction of sibling embryos reaching blastulation

and cohort size. We compared these features in cohorts of “rescued” embryos to all cohorts with

the label corresponding to the “erroneous” prediction (by the model that did not have access to

the cohort). For example, the two aforementioned cohort features of a positive embryo that was

predicted as “negative” by a model that did not have access to cohort information and “rescued”

by the cohort features, were compared to the corresponding features of all negative cohorts. This

analysis should highlight whether these cohort features were correlated with the “rescued”

prediction, and thus provide insight on what cohort features are used to improve the model’s

prediction. While not identifying an obvious pattern for rescued negative embryos (Fig. 6C-D),

we revealed in rescued positive embryos an elevation (relative to negative embryos) in the

fraction of sibling embryos reaching blastulation and in the cohort size (Fig. 6E-F). A similar

pattern, although less reliable due to the lower number of rescued embryos (because of the

smaller dataset), was observed for models that included the neural network’s predictions (Fig.

S2). These results suggest that these two cohort features were used by the model to correct

negative-to-positive predictions but not positive-to-negative predictions.
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Figure 6: Analysis of cohort properties that “rescued” erroneous prediction. N transferred blastocysts
=2089 from which 1176 were positive and 913 were negative embryos. The results refer to a model
trained with morphology, morphokinetics and oocyte age without and with cohort features. (A) Embryos
matched classification scores by the two models, without (x-axis) and with (y-axis) cohort features. (B)
Distribution of the difference in the embryos matched classification scores: with - without cohort features.
Mean (standard deviation) difference for positive cohorts was 0.043 (0.1) (Wilcoxon signed rank test
p-value < 0.0001) versus -0.02 (0.09) (Wilcoxon rank-sum test p-value < 0.01) for negative cohorts.
(C-F) Distribution of fraction of blastocysts siblings (C,E) or cohort size (D,F) for positive (green, C-D)
or negative (red, E-F) embryos. Each of the data points above the distribution indicate an embryo that was
“rescued” with the cohort feature, i.e., classified erroneously by a model trained without and corrected
with a model trained with cohort features. (C-D) Negative embryos that were erroneously classified as
positive without cohort features and were correctly classified by a model that had access to cohort
features. N = 15 rescued embryos.(C) Mean (standard deviation) fraction of sibling embryos within a
cohort (not including the transferred embryo/s) reaching blastulation was 0.49 (0.22) for positive cohorts
versus 0.5 (0.29) for negative rescued embryos, Wilcoxon signed rank test on the differences from the
positive embryos’ mean was not statistically significant. (D) Mean (standard deviation) cohort size was
10.56 (3.19) for positive cohorts versus 11.3 (3.64) for negative rescued embryos, Wilcoxon signed rank
test on the differences from the positive embryos’ mean was not statistically significant. (E-F) Positive
embryos that were erroneously classified as negative without cohort features and were correctly classified
by a model that had access to cohort features. N = 62 rescued embryos. Distribution of the fraction of
embryos within a cohort (not including the transferred embryo/s) to develop to a blastocyst (E) or cohort
size (i.e., number of sibling embryos in a cohort) (F) compared across negative embryos versus positive
embryos that were “rescued” by the cohort features, i.e., correctly classified only by the classifier that had
access to cohort information. (E) Mean (standard deviation) fraction of sibling embryos within a cohort
(not including the transferred embryo/s) reaching blastulation was 0.41 (0.25) for negative cohorts versus
0.56 (0.21) for positive rescued embryos, Wilcoxon signed rank test on the differences from the negative
embryos’ mean p-value < 0.0001. (F) Mean (standard deviation) cohort size was 9.9 (3.36) for negative
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cohorts versus 10.74 (3.17) for positive rescued embryos, Wilcoxon signed rank test on the differences
from the negative embryos’ mean p-value < 0.01.
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Discussion

In vitro fertilization (IVF) is a perfect system for studying the effect of genotypic and

environmental variation on phenotype. This is due to the availability of high-content human

embryo data that includes phenotypic information regarding multiple sibling embryos for each

treatment cycle, who share a common genetic background and similar external conditions. From

the machine learning perspective, IVF is a fitting example for an application where vast

unlabeled data, specifically from non-transferred cohort siblings, can provide valuable

information for a more accurate prediction of embryo phenotypic quality, i.e., implantation

potential. These biological and machine learning concepts converge to a common theme where

the uncertainty in the transferred embryo features, due to either inconsistency in annotations,

features that were not explicitly measured or label ambiguity, can be reduced by information

encapsulated in the correlated cohort embryos. We believe that this is achieved by noise

reduction with the multiple correlated instances.

We established that embryos from the same cohort were more phenotypically similar than

embryos from different cohorts (Fig. 2), demonstrated that siblings of successfully implanted

(positive) embryos were of higher phenotypic quality in relation to siblings of negative embryos

(Fig. 3), and demonstrated that cohort features contribute to machine learning based implantation

prediction (Fig. 4). The latter was achieved by extracting a new set of features from unlabeled

siblings within the cohort, incorporating them with different feature sets, and comparing the

classifier's performance in implantation prediction without versus with cohort features. Even

though each individual cohort feature had only a marginal effect (Fig. 3), the machine learning

driven integration of all cohort features led to a consistent improvement in implantation

prediction regardless of the embryo-focused model (Fig. 4). These results suggest a general

concept where the transferred embryo’s siblings encapsulate discriminative information that is

complementary to the information encoded in the transferred embryo, and thus, cohort features

are likely to contribute to any embryo-derived features. Since the siblings’ data are routinely

collected in the clinic, incorporating cohort features in AI-driven embryo implantation prediction

can have direct translational implications in the clinic.

Previous studies correlated cohort-based properties to implantation outcome. For example,

demonstrating improved outcomes for embryos selected from cohorts with more than five
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embryos [ 25], or from day 3 cohorts where at least one sibling embryo achieved blastulation

after extended culture [ 28, 29]. Other studies incorporated specifically designed cohort-based

features to machine learning models, specifically the cohort size [ 24, 27] and number of

developed embryos [38], or even incorporated multiple cohort-related features to show that the

cohort alone contains discriminative information [ 26]. We performed a comprehensive analysis

that systematically assessed the contribution of incorporation of cohort properties to existing

models for prediction of implantation outcome. We did not decide on specific thresholds, rather

we provided all the “raw” features to the AI machinery to automatically determine and weight

which and what combination was most discriminative. This unbiased approach allowed us to

reveal how discriminative each cohort property is in the context of a given model (Fig. 5) and

which cohort properties were critical to “rescue” embryos that were incorrectly classified without

cohort properties (Fig. 6). Importantly, most of the previous studies mentioned above assessed

embryos that were transferred at day 3 from fertilization. At this early stage of embryo

development, the uncertainty of the implantation potential of a single embryo is higher [30,31],

and thus, additional correlated measurements in cohort features are expected to provide a more

discriminative signal. This is especially relevant when sibling embryos are kept in extended

blastocyst culture and their blastulation outcomes are known. Our results relate to blastocysts,

i.e., day 5 embryos, when the uncertainty is lower. Still, we were able to establish that the cohort

information contributes discriminative power beyond the transferred embryo features.

We found that cohort features “rescued” 4-fold more positive (N = 62) versus negative (N = 15)

embryos (Fig. 6). One explanation for this asymmetry could be due to the ambiguity in the

negative labels. While positive embryos are inherently of high implantation quality, negative

embryos fail implantation because of either low quality embryos and/or poor endometrial or

uterine factors. This creates uncertainty in the ground truth labels of non-implanted embryos, or

“label ambiguity” [ 20]. Thus, it could be easier to “rescue” a positive embryo that was

mistakenly classified as “negative” with a quality cohort, in comparison to a negative embryo

that could be of high implantation potential (also encoded in its cohort features).

In this study, digital embryo images were manually annotated for morphology (based on the

Gardner embryo scoring system) and key morphokinetic events using the time-lapse information.

Manual annotation is throughput-limiting. Automated tools for morphological evaluation [ 22, 23]

and detection of morphokinetic events [ 20,55] are quickly reaching human-level performance
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[56] and have the advantage of avoiding intra- and inter-annotator bias potentially replacing the

need for manual annotations in the near future.

In the context of machine learning, this is an example of semi-supervised learning, where a small

fraction of labeled (transferred embryos) and vast unlabeled observations (non-transferred cohort

siblings) are used together to improve the learned model’s performance toward the task of

predicting implantation potential. While the underlying assumption in semi-supervised learning

is that the observations are unrelated, here we characterize another type of semi-supervised

learning, where the unlabeled observations are associated with the labeled observations, and

suggest a way to use information from these unlabeled observations for improving the prediction

power of the supervised models.
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Methods

Experiments

Data collection and ethics

The data included for this analysis were retrospectively collected from IVF cycles conducted at

IVI Valencia fertility center, Spain, between March 2010 and December 2018. Historical images

of blastocyst-stage embryos and metadata were provided by AiVF. All procedures and protocols

were approved by an Institutional Review Board for secondary research use (IRB reference

number HMO-006-20). All IVF cycles were with either the patient's own oocytes (n=1134) or

with donor oocytes (n=955), ages 18-51 years old (Fig. S3). In cases of oocyte donation, donor

age was considered as the “oocyte age”.

Fertilization was determined by the presence of two pronuclei (2PN) 16-18 hours after

insemination. All zygotes were placed inside the EmbryoScope™ time-lapse incubator system

(Vitrolife, Denmark) and incubated using sequential media protocol until blastocyst-stage. Image

acquisition using the EmbryoScope™ imaging software occurred every 15-20 minutes. For every

embryo, seven-layers of z-stack images 15µm apart were acquired at each time point, where time

0 was defined as the fertilization time. A total of 16,194 oocytes from 1,605 IVF cycles were

recorded. All cycles included at least one fresh single embryo transfer at blastocyst stage with a

known implantation outcome (implanted/not implanted). Out of 2089 embryos with known

implantation outcomes, 1176 were successfully implanted (positive embryos) and 913 failed to

implant (negative embryos).

Annotation of embryo clinical quality

Following in vitro incubation, the number of embryos from the cohort transferred was either one

or two. In cycles where two embryos were transferred, we only included cases where both

embryos either successfully implanted or both failed implantation. Implantation following

embryo transfer was determined by ultrasound scanning for gestational sac after ~seven weeks of

pregnancy. Positive embryos (and their corresponding positive cohorts) were defined when the

number of gestational sacs matched the number of transferred embryos. Negative embryos (and
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their corresponding negative cohorts) were defined when no gestational sac following embryo

transfer was observed.

Analysis

Embryo morphological feature representation

Embryos were morphologically annotated at the blastocyst stage (day 5 of embryonic

development) according to the Gardner scoring scheme by onsite trained embryologists ~120

hours post insemination [8,50]. The time of blastulation was determined by time-lapse

monitoring of embryo development. Specifically, every embryo was assigned a three-part

alphanumeric quality score based on its expansion status (“blastocyst expansion”, ranked 1-6),

morphology of the inner cell mass (“ICM”, ranked A-D), and morphology of the trophectoderm

(“TE”, ranked A-D) (Fig. 2H). Embryos with missing Gardner annotations were excluded from

the analysis. Out of the 2089 embryos, 1936 had all Gardner annotations, where 1141 were

annotated as positive and 795 as negative. Embryos’ morphological variables were

computationally represented via one-hot encoding, i.e., a feature vector of size 5 + 4 + 4 = 13

representing the Gardner scores.

Embryo morphokinetic feature representation

Time-lapse images of embryo development were viewed by onsite trained embryologist and

seven key morphokinetic events were manually annotated in accordance with published

consensus criteria [57]: Time of fertilization (t0), cell division to the 2,3,4, and 8-cell stage (t2,

t3, t4, t8), compaction of the morula (tM), and time of blastulation (tSB). Missing annotations

due to limitations of the dataset were completed according to the following rules, as determined

by domain experts: t2 = time of pronuclei disappearance (tPNf - time when both pronuclei

disappear, independently annotated, see below) + 2 hours; t3 = t4 - 1 hour; t4 = t3 + 1 hour; t8 =

t7 + 3 hours; tM = tSB - 6 hours. Missing morphokinetic event annotations were at levels of

5%-10%, except for tM and tSB with 20% missing annotations. After manually completing the

missing annotations, embryos with a further single missing value were determined by first

finding the five most similar embryos based on the remaining available annotated morphokinetic
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features and then using their mean value of the missing features. Overall, the morphokinetic

feature vector was of size 11 and included the (five) time intervals between every consecutive

developmental stage and the (six) overall time points for each developmental stage from the time

of fertilization. Importantly, our dataset also included manual annotations beyond the

morphokinetic events listed above (e.g., tPNf, see above). These events were not included in the

morphokinetic feature representation used in this analysis because many embryos in the dataset

did not have these morphokinetic events annotated.

Similarity between timing of morphokinetic events

We compared the similarity between the timings of morphokinetic events and between the

timings of consecutive morphokinetic events between embryo pairs within the same cohort

(siblings) and in different cohorts (non siblings). For each morphokinetic event timing and

consecutive morphokinetic events timing, we compared the similarity of all sibling and

non-sibling pairs. A similarity measure that encodes the full morphokinetic profile was

calculated as the Euclidean distance between normalized vectors that included the timing of all

the morphokinetic events and the timing of all the consecutive morphokinetic events.

To compare morphokinetic similarities between sibling and non sibling embryo pairs with

similar morphological properties, we evaluated all embryo triplets that share the same Gardner

scores, where two embryos were siblings and the third embryo was from a different cohort. In

each triplet we evaluated the similarity in morphokinetics between the siblings versus the non

siblings pairs.

Cohort morphology-based feature representation

A cohort contains multiple embryos from the same couples in the same IVF treatment cycle.

Seventeen (17) cohort features were extracted from all cohort siblings, excluding the transferred

embryo. These included the cohort size (the only feature that included the transferred embryo,

the fraction of sibling embryos reaching blastulation (Fig. 3B), the fraction of sibling embryos

that hatched, a 13-dimensional vector encoding the fraction of siblings for each Gardner score

(5+4+4 features).
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Automated deep learning based embryo implantation prediction

We had access to historical images of 772 transferred blastocyst-stage embryos from 638 cohorts

and associated known implantation outcomes. Of these, 482 embryos successfully implanted

(positive) and 290 failed to implant (negative).

Images Preprocessing

Our analysis focused on the blastocyst’s last time-frame prior to hatching and the center z-stack

image. We preprocessed the raw frames in order to segment the embryo region from the

surrounding well and background. This allowed us to train more complex models on a large

training set in reasonable time while keeping the inherent spatial resolution features of the

embryo. To localize and segment the embryo we developed the following pipeline. First, a

mask-RCNN [58] was trained to identify a bounding box around each embryo using 800

manually annotated images. Second, a hough-transform [59] was applied to center the embryo in

the image by detecting a circular object within the bounding box. Third, a U-NET model was

trained based on 500 manually validated outputs from the previous step to provide the embryo

segmentation mask [60]. Our U-NET architecture consisted of 4 convolutional layers for the

encoder (downsampling) / decoder (upsampling) with 32, 64, 128 and 256 filters

correspondingly. Each layer included batch normalization and relu activation function with

maxpooling for the encoder and upsampling for the decoder. Finally, the image was further

resized to 64x64. The trained pipeline architecture is presented in Fig. S4.

Image classification model

A pretrained VGG16 [53] architecture was used as a backbone followed by a flattening layer, a

fully connected 16 node dense layer and a dense single node layer with a sigmoid activation. The

full model was retrained (no freezing of weights) using binary cross entropy loss and the Adam

optimizer with a learning rate of 0.00001 to output a confidence score in the range of 0-1 for

predicting implantation probability.

The model was trained for 100 epochs with a batch size of 32. For each batch,

image-augmentation (brightness, flipping, rotation and Gaussian noise) was performed prior to

fitting the model to reduce overfit. We trained the model with 10-fold cross validation allowing

all the available data points to run at inference and output a confidence score.
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Evaluation of machine learning models without versus with cohort features

Models were trained with morphology features and/or morphokinetic features and/or the oocyte

age. Each feature representation was used to train and then evaluate the performance of two

models: without including cohort features (i.e., using only the transferred embryo information)

versus including cohort features. The deep learning model was used as a feature extractor, where

the model confidence score was one feature, and this features were used together with other

features (e.g., morphokinetics, oocyte age) to train and then evaluate the performance of models

that had vs. those did not have access to cohort features. Models based on the same features

without or with cohort features were compared to evaluate the contribution of cohort features on

the overall prediction. The data was partitioned to train (80%) and test (20%) sets maintaining a

similar ratio of positive (i.e., successful implantation) and negative (failed implantation) cohorts

in both sets. An XGBoost binary classification model was trained for each feature set [61]. When

included, the confidence score of the deep learning model was considered as a single feature.

Receiver Operating Characteristic (ROC) curve (i.e., true positive rate (TPR, sensitivity) versus

false positive rate (FPR, 1-specificity)) and its Area Under the Curve (AUC) were used to

visually and quantitatively compare performance of model pairs without versus with cohort

features. Hyper-parameter tuning was performed independently for each XGBoost classifier

using sklearn’s GridSearchCV [62]. The parameters that were optimized were: (1) Number of

gradient boosted trees, (2) Minimum loss reduction required to make a further partition on a leaf

node of the tree, (3) Maximum tree depth for base learners, (4) Subsample ratio of the training

instance, (5) Subsample ratio of columns when constructing each tree, and (6) Minimum sum of

instance weight (hessian) needed in a child.

Due to the lower volume of annotated raw image data, we applied feature selection,

independently for each model, with the extremely Randomized Trees Classifier (ExtraTrees)

classifier (an updated version of random forest) [63] to reduce the number of features to ten

(unless the number of features was already lower).

Feature importance analysis

For interpretability purposes, we applied the feature importance method with Shapley Additive

ExPlanations (SHAP) [54]. SHAP computes the contribution of each feature to each individual
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prediction. Embryo morphological categorical parameters were transformed into ordinal

variables for the SHAP analysis.
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Supplementary Tables

# embryos # implanted
embryos

# non-
implanted
embryos

# cohorts # positive
cohorts

# negative
cohorts

# siblings

Morphokinetics
annotated

2089 1176 913 1605 928 677 14105

Morphology
annotated

1936 1141 795 1513 908 605 13493

Image data 772 482 290 638 404 234 5990

Table S1: Number of transferred blastocysts, number of implanted blastocysts (positive embryos) and
non-implanted blastocysts (negative embryos), number of cohorts, number of positive and negative
cohorts and number of cohort’s siblings for each dataset.
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Supplementary Figures

Figure S1. Sibling embryos from the same cohort are more similar than non-siblings. (A-F) Distribution
of the difference in time intervals, in minutes (A-F) or normalized distance (G), between fertilization and
each morphokinetic event compared across siblings versus not siblings embryo pairs. morphokinetic
features: cell division to the 2, 3, 4 and 8-cell stage (t2, t3, t4, t8), the compaction of the morula - a day-3
development stage (tM) and the start of blastulation (tSB) - a day-5 development stage. N embryos =
16194. N cohorts = 1605. N positive cohorts = 928, N negative cohorts = 677. (A) Mean (standard
deviation) of distances between fertilization-t2 intervals was 158.56 (150.59) for sibling embryos versus
217.62 (218.51) for not-sibling embryos, Mann-Whitney-U signed rank test p-value < 0.0001. (B) Mean
(standard deviation) of distances between fertilization-t3 intervals was 258.21 (238.36) for sibling
embryos versus 327.68 (290.56) for not-sibling embryos, Mann-Whitney-U signed rank test p-value <
0.0001. (C) Mean (standard deviation) of distances between fertilization-t4 intervals was 261.45 (268.56)
for sibling embryos versus 333.01 (314.93) for not-sibling embryos, Mann-Whitney-U signed rank test
p-value < 0.0001. (D) Mean (standard deviation) of distances between fertilization-t8 intervals was
700.46 (595.04) for sibling embryos versus 836.65 (666.99) for not-sibling embryos, Mann-Whitney-U
signed rank test p-value < 0.0001. (E) Mean (standard deviation) of distances between fertilization-tM
intervals was 537.38 (443.54) for sibling embryos versus 655.45 (515.67) for not-sibling embryos,
Mann-Whitney-U signed rank test p-value < 0.0001. (F) Mean (standard deviation) of distances between
fertilization-tSB intervals was 499.29 (397.18) for sibling embryos versus 596.34 (462.68) for not-sibling
embryos, Mann-Whitney-U signed rank test p-value < 0.0001. (G) Mean (standard deviation) of
normalized distances between all morphokinetic features time intervals from fertilization was 0.04 (0.02)
for sibling embryos versus 0.05 (0.02) for not-sibling embryos, Mann-Whitney-U signed rank test p-value
< 0.0001.
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Figure S2: Analysis of cohort properties that “rescued” erroneous prediction. N transferred blastocysts =
772 from which 482 were positive and 290 were negative embryos. The results refer to a model trained
with deep convolutional neural network, morphology, morphokinetics and oocyte age without and with
cohort features. (A) Embryos matched classification scores by the two models: without (x-axis) and with
(y-axis) cohort features. (B) Distribution of the difference in the embryos matched classification scores:
with - without cohort features. Mean (standard deviation) difference for positive cohorts was 0.13 (0.11)
(Wilcoxon rank-sum test p-value < 0.0001) versus 0.01 (0.17) (Wilcoxon rank-sum test was not
statistically significant) for negative cohorts. (C-F) Distribution of fraction of blastocysts siblings (C,E) or
cohort size (D,F) for positive (green, C-D) or negative (red, E-F) embryos. Each of the data points above
the distribution indicate an embryo that was “rescued” with the cohort feature, i.e., classified erroneously
by a model trained without and corrected with a model trained with cohort features. (C-D) Negative
embryos that were erroneously classified as positive without cohort features and were correctly classified
by a model that had access to cohort features. N = 12 rescued embryos.(C) Mean (standard deviation)
fraction of sibling embryos within a cohort (not including the transferred embryo/s) reaching blastulation
was 0.51 (0.2) for positive cohorts versus 0.61 (0.19) for negative rescued embryos, Wilcoxon signed rank
test on the differences from positive embryos mean found no statistical significance. (D) Mean (standard
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deviation) cohort size was 10.56 (3.19) for positive cohorts versus 11.91 (3.64) for negative rescued
embryos, Wilcoxon signed rank test on the differences from positive embryos mean found no statistical
significance. (E-F) Positive embryos that were erroneously classified as negative without cohort features
and were correctly classified by a model that had access to cohort features. N = 18 rescued embryos.
Distribution of the fraction of embryos within a cohort (not including the transferred embryo/s) to develop
to a blastocyst (E) or cohort size (i.e., number of sibling embryos in a cohort) (F) compared across
negative embryos versus positive embryos that were “rescued” by the cohort features, i.e., correctly
classified only by the classifier that had access to cohort information. (E) Mean (standard deviation)
fraction of sibling embryos within a cohort (not including the transferred embryo/s) reaching blastulation
was 0.5 (0.23) for negative cohorts versus 0.57 (0.17) for positive rescued embryos, Wilcoxon signed rank
test on the differences from negative embryos mean found no statistical significance (p-value = 0.07). (F)
Mean (standard deviation) cohort size was 10.64 (3.03) for negative cohorts versus 10.11 (3.39) for
positive rescued embryos, Wilcoxon signed rank test on the differences from negative embryos mean
found no statistical significance.

Figure S3: Distribution of oocyte age for all treatments. N= 2089. N cohorts = 1605. Mean (standard
deviation) oocyte age was 33.99 (7.98).

Figure S4: Oocyte segmentation pipeline (left-to-right). Mask-RCNN detects the embryo’s bounding box.
The cropped image is segmented by a U-NET network. Finally the image is down sampled to 64x64.
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תקציר

למידת מכונה המבוססת על תמונות עוברים מרגע ההפרייה ועד ההחזרה לרחם שמטרתה לשפר את בחירת העובר

עם).IVF(גופיתהחוץההפריהבתחוםמהפכהמחוללתברחםלהשתרשהעוברשלההסתברותחיזויואתהמוחזר

זאת, הרוב המכריע של העוברים לא מוחזר לרחם, וכיום מתעלמים מהמידע המגולם בעוברים אלה שתוצאות ההחזרה

תורםIVFטיפולמאותו"אחים"בעובריםהמקודדהמידעמידהובאיזוהאםבודקיםאנוזהבמחקרידועות.לאשלהם

לביצועים של חיזוי השרשה מבוסס למידת מכונה. ראשית, אנו מראים כי תוצאת ההשרשה של העובר מתואמת עם

מאפייני האחים בטיפול. שנית, אנחנו מדגימים כי המידע המקודד בעוברים אחים אלו משפר את ביצועי חיזוי ההשרשה

של העובר המוחזר. שלישית, אנחנו מאפיינים אילו תכונות תרמו לחיזוי, כאשר אנחנו מתמקדים במיוחד בתכונות

שהצילו עוברים בעלי תחזיות שגויות. התוצאות שלנו מצביעות על כך שמודלים לחיזוי השרשת עוברים יכולים להפיק

תועלת מהדטה הרב, הזמין והלא מתוייג של עוברים אחים באותו הטיפול, על ידי הפחתת הרעש המובנה של העובר

המוחזר.
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